分布式光伏并网对配电网的影响及解决措施分析

您所在的位置:网站首页 分布式光伏接地要求有哪些 分布式光伏并网对配电网的影响及解决措施分析

分布式光伏并网对配电网的影响及解决措施分析

2024-07-14 08:36| 来源: 网络整理| 查看: 265

引言

我国针对现阶段经济发展与能源紧张之间的矛盾问题,提出了节能减排的口号,以此减少对不可再生能源的依赖,使用可再生的新能源进行生产运行与活动。我国的供电局势一直处于供不应求的状态,因此国家电网、供电单位提出了多方面的改进措施,例如西电东输、峰谷供电等,但是这仅能缓解部分供电危机,而采用目前应用效果极佳的分布式光伏发电技术,可以保证满足区域内所有用电群体的用电需求,确保人们可以顺利开展各项活动。

1分布式光伏电源概述

使用可再生的太阳能进行电能转化时,可以使用太阳能电池板将太阳能转化为电能,这种获取电能的装置即光伏电源,其依托太阳的光生伏特效应,将太阳发出的热量,在电池板等装置的作用下,生产出电能,这种电能可以作为有效的电源供应给所需的人使用。光伏电源的装置结构主要包括三部分,即控制器、太阳能电池板、逆变器,在共同作用下进行电能的发电与储存。这种电源的电压等级较低,在生产使用的过程中,不会对环境造成破坏,使用灵活,尤其是对于一些偏远山区的居民而言,使用太阳能供电的效果好于电网供电,其应用优势非常明显。

在使用区域发电后,该电源可以独立使用,或者可以连接周边的配电网共同配电,如图1所示。其有着较强的地区适应性,储备的电能基本可以供应本地区人们的用电所需。但是在进行电能转化时,太阳能受气候等因素干扰,容易出现输出功率异常等情况,并网运行可能会对配电网运行的稳定性产生影响,使得电网的负荷调控无法顺利进行。现阶段,国家电网公司对于分布式光伏并网工作提出了规范性要求,使得光伏电源需要按照要求进行并网输电,减少并网后的不利影响。要求指出,首先,并网后光伏电源可以为电网输送电力资源,且能够促使电网稳定运行。其次,接入的光伏电源数量需要控制,多个电源的总体影响较大,且接入的总容量需控制,不可超过上级变压器有效负荷量的2/4。最后,该电源的短路和额定电流的比值需要在20kV以上:根据电网条件、装机容量,确定并网电压等级,一般光伏电源的电压值处于8kV以下,或者低于8kV时,配电网的电压值即为220kV等。如果接入的低电压、高电压均符合并网标准,则可以先进行低电压的并网。因此,供电单位在本地区的供电中,根据该项标准对并网工作进行检查监督,找出影响电网稳定性的因素,及时采取有效的手段进行规避处理,确保分布式光伏并网工作的安全可靠性。

2分布式光伏并网对配电网的影响分析

2.1电网运行控制不佳

对于太阳能资源的有效利用,可以采用光伏并网来实现,但是大规模应用后,一旦供电环境较为恶劣,供电单位的工作人员无法对变化的并网功率进行监控把握,以及对于电能的负荷增长也无法做出准确判断,电力调度工作面临较多困难。太阳能发电受到较多不稳定因素的干扰,在发生严重的问题后,工作人员需要使用传统的手段进行发电,重新制定供电计划,这将无法保证人们的生活用电。如果并网后,配电网接入的分布式光伏电源较多,电网的调峰压力、调频将会受到明显影响,存在非常严重的峰谷差异。此外,在公共电网中,接入该种电源,使得电源点的数量、分布区域变多、变广,在电力系统无法对所有电源点控制的情况下,需要进行科学合理的供电调控,加强电网的运行效率。但处理不当易使得电力系统的多个供电设备、电压值、电网调峰出现问题,控制效果不佳,最终造成配电网运行安全事故。

2.2电能质量受损

并网运行后,需要在高频调制下,开始逆变器的运行工作,但是这种运行方式易产生谐波,使得电能输出的质量受损,且谐波在放大之后,输出功率也会发生相应变化,导致整个电网的电压不稳。同时,以往常规的配电网电能供应模式为单一式供应,但是在接入光伏电源后,由于各个接入点的电压不同,需要对接入电源后获得的电能进行集中式管理,以此统一进行电能的分配,这使得配电网工作涉及的环节较多,电能质量在谐波、电压闪变等因素的影响下出现质量问题。

2.3孤岛效应

该问题多发生在分布式光伏电源与公共电网并网之后,在电网供电中,一旦其中的公共电网存在故障断电问题,无法正常给用户供电后,由于不能及时、快速地查找故障原因,而光伏电源的供电工作还在继续进行,使得诸多处于孤岛地区的用户无法有效用电,造成了孤岛效应。此时设备故障检修人员直接对设备进行检查维修,很容易引发安全事故。此外,在孤岛效应下,主电网与该电网由于操作不同步,会出现严重的过电压问题。

3分布式光伏并网对配电网影响的改进措施

3.1电网运行控制不佳的改善方法

针对并网之后的电网控制效果不良问题,供电单位可以使用光伏发电功率预测技术等手段,对光伏电源接入后的自身功率变化情况以及并网后的电源控制进行监控,使得光伏电源以及其他的电源均可以在自动化控制下,实现动态化的监督管理以及供电的协调配置。首先可以在光伏电源接入后,对于电源周围的太阳能光照强度、云层的厚度等数据进行准确调查,然后利用技术构建光伏发电功率预测模型,根据气候的变化情况,预测同一类、不同季节太阳能发电时的功率数据,找出其中的规律,为并网后电网有效运行的控制工作提供依据。其次,结合供电区域的光照情况,调整光伏电源的设置区域,以此提高光伏电源的稳定性。例如可以在照射强度高的区域,多进行光伏电源装置的设置等。最后,可以在发电时多进行储能装置的设置,在电源供应中,可能出现供电功率不稳定情况,需要使用储备好的电能以实现有效供给,提高电网的运行效率。

3.2电能质量受损的改善方法

供电单位可以在并网之前,对于光伏电源以及各个接入点的电能质量进行综合性管理,应用在线监测手段对电能的质量进行检查,如果发现电压波动,或者大量谐波干扰,可快速采取措施,加强对电能质量的维护。

3.3孤岛效应的改善方法

对于该问题可以通过检修手段进行检测,如图2所示,以此有针对性地进行故障处理。目前较常用的检测手段有被动式检测法。当电网断电后,使用该手段可以对逆变器的工作参数进行调查,如果检出的输出功率以及负载功率之间存在较大的差异,就表明存在孤岛效应,当上述两个功率的值相差不大时,该法检出的效果不理想。同时,还可以使用主动式检测法。该法在检查时,需要对逆变器主动进行参数调整,以此来对电网的运行进行干扰。如果这些干扰参数无法被检测到,表明电网不存在孤岛效应,有故障问题发生时,逆变器的异常参数会远远超出标准值以及调节的数值,以便可以检测出该种效应情况。使用主动式检验手段后,检测人员可以获得精度值较高的参数,但是存在控制难度大等问题。此外,还有故障信号检测法。供电设备的监控系统会在故障发生后,及时发出光伏电源的异常信号,工作人员可迅速对并网活动进行调整或切断。目前,被动检测和主动检测两种方法联合使用对于检测孤岛效应的效果较好。

4结语

面对当前社会中存在的供电问题,需要在全国各地区进行分布式光伏电源的应用推广工作,但是其在与配电网进行并网供电的过程中,供电单位需要对常见的问题多进行研究,以便能够在应用之前,通过合理的施工与调节,减少问题的发生率,并且便于配电网检修人员在供电期间发生故障问题时,能够准确找到问题的原因与解决方法,不断提高配网供电的效率和质量。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3