图像处理: 超像素(superpixels)分割 SLIC算法

您所在的位置:网站首页 像素是三维的吗为什么 图像处理: 超像素(superpixels)分割 SLIC算法

图像处理: 超像素(superpixels)分割 SLIC算法

2024-07-16 07:36| 来源: 网络整理| 查看: 265

 

简介:最近项目使用到了超像素分割,因此顺道研究了以下SLIC这一算法。超像素分割这类low-level vision问题已经在CVPR,ICCV这种顶级会议上逐渐销声匿迹,越来越流行的learning method渐渐占据了这些顶级会议90%的篇幅。本文讲解的SLIC是2010年提出的一种十分简单的超分辨分割算法,原理简单、便于实现。

在这里插入图片描述在这里插入图片描述

一.SLIC(simple linear iterative clustering)原理分析

初始化种子点(聚类中心):按照设定的超像素个数,在图像内均匀的分配种子点。假设图片总共有 N 个像素点,预分割为 K 个相同尺寸的超像素,那么每个超像素的大小为N/ K ,则相邻种子点的距离(步长)近似为S=sqrt(N/K)。

在种子点的n*n邻域内重新选择种子点(一般取n=3)。具体方法为:计算该邻域内所有像素点的梯度值,将种子点移到该邻域内梯度最小的地方。这样做的目的是为了避免种子点落在梯度较大的轮廓边界上,以免影响后续聚类效果。

在每个种子点周围的邻域内为每个像素点分配类标签(即属于哪个聚类中心)。和标准的k-means在整张图中搜索不同,SLIC的搜索范围限制为2S2S,可以加速算法收敛,如下图。在此注意一点:期望的超像素尺寸为SS,但是搜索的范围是2S*2S。在这里插入图片描述

距离度量。包括颜色距离和空间距离。对于每个搜索到的像素点,分别计算它和该种子点的距离。距离计算方法如下:

在这里插入图片描述 其中,dc代表颜色距离,ds代表空间距离,Ns是类内最大空间距离,定义为Ns=S=sqrt(N/K),适用于每个聚类。最大的颜色距离Nc既随图片不同而不同,也随聚类不同而不同,所以我们取一个固定常数m(取值范围[1,40],一般取10)代替。最终的距离度量D’如下:

在这里插入图片描述

由于每个像素点都会被多个种子点搜索到,所以每个像素点都会有一个与周围种子点的距离,取最小值对应的种子点作为该像素点的聚类中心。

迭代优化。理论上上述步骤不断迭代直到误差收敛(可以理解为每个像素点聚类中心不再发生变化为止),实践发现10次迭代对绝大部分图片都可以得到较理想效果,所以一般迭代次数取10。

增强连通性。经过上述迭代优化可能出现以下瑕疵:出现多连通情况、超像素尺寸过小,单个超像素被切割成多个不连续超像素等,这些情况可以通过增强连通性解决。主要思路是:新建一张标记表,表内元素均为-1,按照“Z”型走向(从左到右,从上到下顺序)将不连续的超像素、尺寸过小超像素重新分配给邻近的超像素,遍历过的像素点分配给相应的标签,直到所有点遍历完毕为止。

二.伪算法描述 /∗ Initialization ∗/ Initialize cluster centers Ck = [lk , ak , bk , xk , yk ]T by sampling pixels at regular grid steps S. Move cluster centers to the lowest gradient position in a 3 × 3 neighborhood. Set label l(i) = −1 for each pixel i. Set distance d(i) = ∞ for each pixel i. repeat /∗ Assignment ∗/ for each cluster center Ck do for each pixel i in a 2S × 2S region around Ck do Compute the distance D between Ck and i. if D < d(i) then set d(i) = D set l(i) = k end if end for end for /∗ Update ∗/ Compute new cluster centers. Compute residual error E. until E ≤ threshold 三.参考博文

1.https://github.com/laixintao/slic-python-implementation 2.https://blog.csdn.net/zhj_matlab/article/details/52986700 3.https://blog.csdn.net/electech6/article/details/45509779

超像素(Superpixel)理解

  最近看点云处理的文章,有些文章中提到了superpixel这个概念,查了一些资料,对其理解记录如下:

超像素就是把一幅原本是像素级(pixel-level)的图,划分成区域级(district-level)的图。可以将其看做是对基本信息进行的抽象。超像素分割属于图像分割(image segmentation),再细化应该属于过分割(over segmentation)。比如我们对一幅图像进行超像素分割,分割之后,会得到许多大小不一的区域,我们可以从这些区域中提取出有效的信息,比如颜色直方图、纹理信息。比如有一个人,我们可以对这个人的图像进行超像素分割,进而通过对每个小区域的特征提取,辨识出这些区域是处于人体的哪个部分(头部、肩部,腿部),进而建立人体的关节图像。如果你要用图论的方法来分离前景背景。如果这幅图的大小为480 * 640,那么你建立的图(graph)有480640个节点。如果你预先对这幅图像使用超像素分割,将其分割为1000个超像素,那么你建立的图只有1000个节点。大大提升了计算速度。有趣直观并且带有源代码(业界良心)的是SLIC Superpixel,使用K-means的聚类方法,分割的效果很好。地址为:https://infoscience.epfl.ch/record/177415 原理 超像素概念是2003年Xiaofeng Ren提出和发展起来的图像分割技术,是指具有相似纹理、颜色、亮度等特征的相邻像素构成的有一定视觉意义的不规则像素块。它利用像素之间特征的相似性将像素分组,用少量的超像素代替大量的像素来表达图片特征,很大程度上降低了图像后处理的复杂度,所以通常作为分割算法的预处理步骤。

常见的超像素分割方法包括: Graph-based 、NCut 、Turbopixel 、 Quick-shift 、 Graph-cut a、Graph-cut b 以及 SLIC 。

其中,SLIC(simple linear iterativeclustering),即 简单线性迭代聚类 。  它是2010年提出的一种思想简单、实现方便的算法,将彩色图像转化为CIELAB颜色空间和XY坐标下的5维特征向量,然后对5维特征向量构造距离度量标准,对图像像素进行局部聚类的过程。

SLIC主要优点如下:

生成的超像素如同细胞一般紧凑整齐,邻域特征比较容易表达。这样基于像素的方法可以比较容易的改造为基于超像素的方法。 不仅可以分割彩色图,也可以兼容分割灰度图。 需要设置的参数非常少,默认情况下只需要设置一个预分割的超像素的数量。 相比其他的超像素分割方法,SLIC在运行速度、生成超像素的紧凑度、轮廓保持方面都比较理想。

效果图

经过观察发现,在迭代至第10轮后,分割效果基本不再发生变化。

原图 K=64 时

第1轮迭代,效果图:

第20轮迭代,效果图: 

K=128 时

第1轮迭代,效果图: 

第20轮迭代,效果图: 

K=256 时

第1轮迭代,效果图: 

第20轮迭代,效果图: 

K=1024 时

第1轮迭代,效果图: 

第20轮迭代,效果图: 

实现代码

代码是我上网找来的,稍微改动了一丢丢。

原代码出处:SLIC算法分割超像素原理及Python实现

import math from skimage import io, color import numpy as np from tqdm import trange class Cluster(object): cluster_index = 1 def __init__(self, h, w, l=0, a=0, b=0): self.update(h, w, l, a, b) self.pixels = [] self.no = self.cluster_index self.cluster_index += 1 def update(self, h, w, l, a, b): self.h = h self.w = w self.l = l self.a = a self.b = b def __str__(self): return "{},{}:{} {} {} ".format(self.h, self.w, self.l, self.a, self.b) def __repr__(self): return self.__str__() class SLICProcessor(object): @staticmethod def open_image(path): """ Return: 3D array, row col [LAB] """ rgb = io.imread(path) lab_arr = color.rgb2lab(rgb) return lab_arr @staticmethod def save_lab_image(path, lab_arr): """ Convert the array to RBG, then save the image """ rgb_arr = color.lab2rgb(lab_arr) io.imsave(path, rgb_arr) def make_cluster(self, h, w): return Cluster(h, w, self.data[h][w][0], self.data[h][w][1], self.data[h][w][2]) def __init__(self, filename, K, M): self.K = K self.M = M self.data = self.open_image(filename) self.image_height = self.data.shape[0] self.image_width = self.data.shape[1] self.N = self.image_height * self.image_width self.S = int(math.sqrt(self.N / self.K)) self.clusters = [] self.label = {} self.dis = np.full((self.image_height, self.image_width), np.inf) def init_clusters(self): h = self.S / 2 w = self.S / 2 while h < self.image_height: while w < self.image_width: self.clusters.append(self.make_cluster(h, w)) w += self.S w = self.S / 2 h += self.S def get_gradient(self, h, w): if w + 1 >= self.image_width: w = self.image_width - 2 if h + 1 >= self.image_height: h = self.image_height - 2 gradient = self.data[w + 1][h + 1][0] - self.data[w][h][0] + \ self.data[w + 1][h + 1][1] - self.data[w][h][1] + \ self.data[w + 1][h + 1][2] - self.data[w][h][2] return gradient def move_clusters(self): for cluster in self.clusters: cluster_gradient = self.get_gradient(cluster.h, cluster.w) for dh in range(-1, 2): for dw in range(-1, 2): _h = cluster.h + dh _w = cluster.w + dw new_gradient = self.get_gradient(_h, _w) if new_gradient < cluster_gradient: cluster.update(_h, _w, self.data[_h][_w][0], self.data[_h][_w][1], self.data[_h][_w][2]) cluster_gradient = new_gradient def assignment(self): for cluster in self.clusters: for h in range(cluster.h - 2 * self.S, cluster.h + 2 * self.S): if h < 0 or h >= self.image_height: continue for w in range(cluster.w - 2 * self.S, cluster.w + 2 * self.S): if w < 0 or w >= self.image_width: continue L, A, B = self.data[h][w] Dc = math.sqrt( math.pow(L - cluster.l, 2) + math.pow(A - cluster.a, 2) + math.pow(B - cluster.b, 2)) Ds = math.sqrt( math.pow(h - cluster.h, 2) + math.pow(w - cluster.w, 2)) D = math.sqrt(math.pow(Dc / self.M, 2) + math.pow(Ds / self.S, 2)) if D < self.dis[h][w]: if (h, w) not in self.label: self.label[(h, w)] = cluster cluster.pixels.append((h, w)) else: self.label[(h, w)].pixels.remove((h, w)) self.label[(h, w)] = cluster cluster.pixels.append((h, w)) self.dis[h][w] = D def update_cluster(self): for cluster in self.clusters: sum_h = sum_w = number = 0 for p in cluster.pixels: sum_h += p[0] sum_w += p[1] number += 1 _h = sum_h / number _w = sum_w / number cluster.update(_h, _w, self.data[_h][_w][0], self.data[_h][_w][1], self.data[_h][_w][2]) def save_current_image(self, name): image_arr = np.copy(self.data) for cluster in self.clusters: for p in cluster.pixels: image_arr[p[0]][p[1]][0] = cluster.l image_arr[p[0]][p[1]][1] = cluster.a image_arr[p[0]][p[1]][2] = cluster.b image_arr[cluster.h][cluster.w][0] = 0 image_arr[cluster.h][cluster.w][1] = 0 image_arr[cluster.h][cluster.w][2] = 0 self.save_lab_image(name, image_arr) def iterate_10times(self): self.init_clusters() self.move_clusters() for i in trange(20): self.assignment() self.update_cluster() name = 'Elegent_Girl_M{m}_K{k}_loop{loop}.jpg'.format(loop=i, m=self.M, k=self.K) self.save_current_image(name) if __name__ == '__main__': for k in [64, 128, 256, 1024]: p = SLICProcessor('800.jpg', k, 30) p.iterate_10times()

打印结果:

0%| | 0/20 [00:00


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3