红外线测温法原理

您所在的位置:网站首页 体温检测系统原理图解 红外线测温法原理

红外线测温法原理

2024-04-13 15:44| 来源: 网络整理| 查看: 265

用,石英适用于中波范围,锗或硫化锌适用于8~14 μm波长范围。光纤可用于0.5~5.0 μm波长区。

从应用的观点看,光学器件的主要特征是视场(FOV),即在指定距离处目标尺寸是多少? 例如,在一种普遍采用的透镜系统中,15英寸工作距离处目标直径为1英寸。根据平方反比定律,通过将距离加倍(30英寸),目标区域理论上也加倍(直径为2英寸)。目标尺寸(测量区域)的实际定义将因供应商而异,并且取决于价格。其它光学配置从适用于近距离精密测量的小光斑器件(直径0.030英寸)到适合远距离瞄准的远距离光学器件(距离30英尺时直径为3英寸),不一而足。注意,如果目标占满视场(FOV),工作距离就不应影响精度,这一点很重要。在一种视场(FOV)测量技术中,可变因素是信号损失和直径。一条严格的规则是能量减少量为1%,但可以在一半功率或63.2%功率时提供一些数据。

对准(瞄准)是另一个光学方面的因素。许多传感器没有这种功能;透镜对准表面,测量表面温度。这种结构可用于不需要高精度的大目标,例如卷筒纸。对于使用小光斑光学器件的小目标,以及对于在远距离监测中使用的远距离光学器件,提供有目视瞄准、瞄准灯和激光瞄准。

选择性光谱滤光通常将短波滤光片用于 高温应用(大于1000˚F),将长波滤光 片用于低温测量(–50˚F)。很明显,这 与黑体能量分布曲线拟合,并且还有一 些技术方面的优势。例如,高温/短波使 用热稳定性极强的硅探测器,而且短波 设计最大限度减小了发射率变动造成的 温度误差。其它选择性滤光用于塑料薄 膜(3.43 μm和7.9 μm)、玻璃(5.1 μm)和火焰不敏感区(3.8 μm)。

多种多样的探测器的选择是为了来最大限度利用传感器的灵敏度。如图2中所示,PbS灵敏度最高,热电堆灵敏度最低。大部分探测器是光伏型(在通电时输出电压)或光导型(在激励时改变 电阻)。这些探测器响应迅速、灵敏度高的代价就是热漂移,可以通过多种方法解决热漂移,包括温度补偿(热敏电 阻)电路、温度调节、自动校零电路、斩波(AC和DC输出)以及等温保护。可提供不同程度的无漂移操作,无漂移操作取决于设备价格。

在红外线温度计的电子设备组件内,探测器的大约100-1000 μV的非线性输出信号得到处理。信号被放大1000倍,并经过调节和线性化处理,最终输出的是线性mV或mA信号。趋向于提供4 ~ 20 mA输出,以便将环境电噪声干扰降到最小。

图2:若要优化红外线感应系统的响应,必须考虑探测器的光谱响应和调制特征

这种信号可以转变成RS 232信号,或者提供给PID控制器、远程显示屏或记录器。其它信号调节选项包括通/断报警、适用于间歇目标的可调峰值保持功能、可调响应时间和/或采样保持电路。

红外线温度计的平均响应时间大约为300ms,但是可以使用硅探测器获得大约10ms的信号输出。现实中,很多仪器都拥有可调节响应功能,可对接收的噪声信号进行衰减,并且可对灵敏度进行现场调节。并非总是必须提供最快的响应。 但是有一些涉及感应加热以及其它类型的应用,它们要求大约10-50 ms的响应时间,可通过红外线测温法获得。

单波长测温法

基本单波长设计用于测量表面在规定波长所发射的总能量。配置包括带简单远程仪表的手持式探头、可同时查看目标和温度的复杂便携式设备,以及记忆和/或打印输出功能,不一而足。在线固定安装式传感器从配备远程电子设备(OEM设计)的简单小型探测器到拥有远程PID控制的坚固耐用设备不等。纤维光学器件、激光瞄准、水冷、CRT显示器和扫描系统也包括在用于过程监控和控制应用的选件中。在尺寸、性能、耐用差异。

过程传感器配置、红外线光谱滤光、温度范围、光学器件、响应时间和目标发射率是重要的设计元素,它们影响性能,必须在选型过程中仔细考虑。

传感器配置可以是简单的便携式,或两线制变送器,还可以是复杂的加固型感应装置或扫描设备。目视瞄准、激光瞄准、无瞄准、光纤、水冷、输出信号及远程显示可以笼统地代表各种不同可选功能。这在某种程度上存在主观性,需要进行设计审查。多数情况下,如果是简单应用,例如测量卷筒纸温度,简单的低成本传感器就可以应付了;如果是复杂应用,例如在真空室内测量或者测量小目标,则更先进的传感器将是更好的选择。

红外线光谱响应和温度范围的选择与具体应用有关。短波适合高温测量,长波适合低温测量,这符合黑体能量分布曲线。如果涉及透明目标,例如塑料和玻璃,则需要使用选择性窄带滤光。例如,聚乙烯塑料的CH吸收光谱带为3.43 μm,,在此范围内聚乙烯塑料是不透明的。通过在该范围内滤光,发射率因素得以简化。同样,大多数玻璃类材料在4.6 μm光谱带时变得不透明,在5.1 μm范围内进行窄带滤光就可以精确地测量玻璃表面温度。另一方面,要透过玻璃窗观察,在1-4 μm区域被滤光的传感器允许您透过玻璃窗测量真空室和压力室温度。在测量这类舱室温度时,另一个选择是使用带有真空衬套或压力衬套的光纤电缆。

光学特征和响应时间是两个传感器特征,在允许15英寸处标准视场约为1英寸以及响应时间小于



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3