以太网基础

您所在的位置:网站首页 什么是Mac 以太网基础

以太网基础

2023-09-21 02:02| 来源: 网络整理| 查看: 265

网卡(Network Interface Card,简称NIC),也称网络适配器,是电脑与局域网相互连接的设备。无论是普通电脑还是高端服务器,只要连接到局域网,就都需要安装一块网卡。如果有必要,一台电脑也可以同时安装两块或多块网卡。

电脑之间在进行相互通讯时,数据不是以流而是以帧的方式进行传输的。我们可以把帧看做是一种数据包,在数据包中不仅包含有数据信息,而且还包含有数据的发送地、接收地信息和数据的校验信息。

一个网卡主要包括OSI的最下面的两层,物理层和数据链路层

物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。物理层的芯片称之为PHY数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。数据链路层的芯片称之为MAC控制器

本文针对这两层进行相关的学习,总结整个系统的框架和物理上硬件组成原理,学习数据包的发送和接收的处理过程。

1. 系统概述

从硬件的角度来分析,以太网的电路接口一般由CPU、MAC(Media Access Control)控制器和物理层接口(physical Layer PHY)组成,如下图所示 img

对于上述三部分,并不一定都是独立的芯片,主要有以下几种情况

CPU内部集成了MAC和PHY,难度较高CPU内部集成MAC,PHY采用独立芯片(主流方案)CPU不集成MAC和PHY,MAC和PHY采用独立芯片或者集成芯片(高端采用)

PHY整合了大量模拟硬件,而MAC是典型的全数字器件,芯片面积及模拟/数字混合架构是为什么先将MAC集成进微控制器而将PHY留在片外的原因。更灵活、密度更高的芯片技术已经可以实现MAC和PHY的单芯片整合

以常用的CPU内部集成MAC,PHY采用独立的芯片方案,虚线内表示CPU和MAC集成在一起,PHY芯片通过MII接口与CPU上的MAC互联。

在这里插入图片描述

对于这种方案,其硬件方案比独立的相对于更简单,PHY与MAC之间有以下两个重要的硬件接口

MDIO总线接口,主要是完成CPU对于PHY芯片的寄存器配置MII总线接口,主要是完成数据收发相关的业务

当我们的PHY芯片发送数据,接受到MAC层发送过来的数字信号,然后转换成模拟信号,通过MDI接口传输出去。但是我们的网线传输的距离又很长,有时候需要送到100米甚至更远的地址,那么就会导致信号的流失。而且外网线与芯片直接相连的话,电磁感应和静电,也很容易导致芯片的损坏,所以就要使用网络变压器,其主要作用是

传输数据,它把PHY送出来的差分信号用差模耦合的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到不同电平的连接网线的另外一端隔离网线连接的不同网络设备间的不同电平,以防止不同电压通过网线传输损坏设备还能使芯片端与外部隔离,抗干扰能力大大增强,而且对芯片增加了很大的保护作用,保护PHY免遭由于电气失误而引起的损坏(如雷击) 2. MAC控制器

MAC(Media Access Control),即媒体访问控制子层协议,该部分有两个概念:MAC可以是一个硬件控制器以及MAC通讯协议。该协议位于OSI七层协议中数据链路层的下半部分,主要是负责控制与连接物理层的物理介质。 在这里插入图片描述

发送数据:MAC协议可以事先判断是否可以发送数据,如果可以发送将数据加上一些控制信息,最后将数据以及控制信息以规定的格式发送到物理层接收数据:MAC协议首先判断输入的信息并是否发生传输错误,如果没有错误,则去掉控制信息后发送至LLC(逻辑链路控制)层。 2.2 MAC与PHY接口

MAC与PHY之间通过两个接口连接,分别为SMI接口和MII接口。

MII叫做介质独立接口,以太网MAC通过该接口发出数据帧经过PHY后传输到其他网络节点上,同时其他网络节点的数据先经过PHY后再由MAC接收;SMI叫做是串行管理接口,以太网MAC通过该接口可以访问PHY的寄存器,通过对这些寄存器操作可对PHY进行控制和管理。 2.1.1 MII接口

MII(Media Independent Interface)即媒体独立接口,MII接口是MAC与PHY连接的标准接口。它是IEEE-802.3定义的以太网行业标准。MII接口提供了MAC与PHY之间、PHY与STA(Station Management)之间的互联技术。媒体独立表明在不对MAC硬件重新设计或替换的情况下,任何类型的PHY设备都可以正常工作.它包括一个数据接口,以及一个MAC和PHY之间的管理接口。MII接口有MII、RMII、SMII、SSMII、SSSMII、GMII、SGMII、RGMII等。这里简要介绍其中的MII和RGMII。

MII接口主要包括以下三个部分:

从MAC层到PHY层的发送数据接口从PHY层到MAC层的接收数据接口从MAC层和PHY层之间寄存器控制和信息获取的MDIO接口

首先来看看MII的MAC层定义接口

在这里插入图片描述

MII 数据接口总共需要 16 个信号,包括 TX_ER,TXD[3:0],TX_EN,TX_CLK,COL,RXD[3:0],RX_ER,RX_CLK,CRS,RX_DV 等。MII的时钟为25MHz,传输速率为10/100Mbps。所以MII的特性如下:

支持10Mb/s和100Mb/s的数据速率100M工作模式下,参考时钟是25MHz;10M工作模式下,信号参考时钟是2.5MHz支持全双工、半双工两种工作模式发送和接收数据时采用,4bit方式

RMII的用途: RMII是简化的MII接口,在数据的收发上它比MII接口少了一倍的信号线(2数据位),所以它一般要求是50MHz的总线时钟。RMII一般用在多端口的交换机,所有的数据端口公用一个时钟用于所有端口的收发,这里就节省了不少的端口数目.RMII的一个端口要求7个数据线,比MII少了一倍,所以交换机能够接入多一倍数据的端口.和MII一样,RMII支持10Mbps和100Mbps的总线接口速度.

后来为了支持千兆网口,也就开始有了千兆网的MII接口,也就是GMII接口。现在比较常用的是RGMII,减小了MAC和PHY之间的引脚数量。数据信号和控制信号混合在一起,并且在工作时钟的上升沿和下降沿同时采样,其对应关系图如下:

10M带宽对应的是2.5MHz,因为4bit*2.5M=10Mbps100M带宽对应的是25MHz,因为4bit*25M=100Mbps1000M带宽对应的是125MHz,因为250MHz频率太高,所以采用双边沿采样技术(会带来设计复杂度)。4bit125M2=1000Mbps 接口引脚速度支持(Mbps)利弊MIIRX_D[3:0]RX_CLK, RX_DV, CRS, COL TX_D[3:0], TX_CLK, TX_EN(14)10, 100普通引脚分配、低速、便于布线、最低延迟无1-Gbps支持,高引脚计数MII减少(RMII)RX_D[1:0], CRS_DV, TX_D[1:0], TX_EN(6)10, 100引脚计数减少确定性延迟低 (由于先进、先出),无1-Gbps支持千兆位MII(GMII)RX_D[7:0], GRX_CLK, RX_CTRL, TX_D[7:0], GTX_CLK, TX_CTRL(20)10, 100, 10001-Gbps支持,低延迟高引脚计数,一般不支持千兆位MII减少(RGMII)RX_D[3:0], RX_CLK, RX_CTRL, TX_D[3:0], TX_CLK, TX_CTRL(12)10, 100, 10001-Gbps支持,普通引脚分配脚分配布线困难,电磁兼容性(EMC)差串行千兆位MII(SGMII)SO_P, SO_M, SI_P, SI_M(4)10, 100, 10001-Gbps支持,普通引脚分配,电磁兼容性优良,易于布线集成电路更昂贵 2.1.2 SMI接口

SMI是MAC内核访问PHY寄存器接口,它由两根线组成,双工,MDC为时钟,MDIO为双向数据通信,原理上跟I2C总线很类似,也可以通过总线访问多个不同的phy。

MDC/MDIO基本特性:

两线制:MDC(时钟线)和MDIO(数据线)。时钟频率:2.5MHz通信方式:总线制,可同时接入的PHY数量为32个通过SMI接口,MAC芯片主动的轮询PHY层芯片,获得状态信息,并发出命令信息。

管理帧格式:

在这里插入图片描述

读操作时序

在这里插入图片描述

写操作时序

在这里插入图片描述

报头: 每个读写均可通过报头字段启动,报头字段对应于MDIO线上32个连续的逻辑“1”位以及MDC的32个周期,该字段用于与PHY设备建立同步起始: 起始由模式定义操作: 定义读写类型PADDR: PHY地址由5位,可构成32个唯一PHY地址RADDR: 寄存器地址有5位TA:数据: 数据字段为16位空间: MDIO线驱动为高阻态,三态驱动器必须禁止,PHY的上拉电阻使线路保持高阻态 3.PHY

物理层位于OSI最底层,物理层协议定义电气信号、线的状态、时钟要求、数据编码和数据传输用的连接器。 物理层的器件称为PHY。

PHY是物理接口收发器,它实现OSI模型的物理层。IEEE-802.3标准定义了以太网PHY包括MII/GMII(介质独立接口)子层、PCS(物理编码子层)、PMA(物理介质附加)子层、PMD(物理介质相关)子层、MDI子层。

3.1 什么是PHY 发送数据:对于PHY来说,并没有帧的概念,对它来说,不管是地址、数据还是CRC,都会将并行数据转换为串行数据流,在按照物理层的编码规则把数据编码,最终转换成模拟信号发送出去接收数据:从外部接收数据时,模拟信号先转成数字信号,再经过解码得到数据, 经过MII送到MACCSMA/CD:可以检测到网络上是否有数据在传送,如果有数据在传送中就等待,一旦检测到网络空闲,再等待一个随机时间后将送数据出去。如果两个碰巧同时送出了数据,那样必将造成冲突。这时候,冲突检测机构可以检测到冲突,然后各等待一个随机的时间重新发送数据 3.2 MDI

MDI口是快速以太网100BASE-T定义的与介质有关接口(Media Dependent Interface)。MDI是指通过收发器发送的100BASE-T信号,即100BASE-TX、FX、T4或T2信号。将集线器连接网络接口卡时,其发送和接收对通常是相互连接的。集线器之间连接时,通常需要一条跨接电缆,其中的发送和接收对是反接的。MDI是正常的UTP或STP连接,而MDI-X连接器的发送和接收对是在内部反接的,这就使得不同的设备(如集线器-集线器或集电器-交换机),可以利用常规的UTP或STP电缆实现背靠背的级联。”

3.3 PHY基础知识简介

PHY是IEEE 802.3规定的一个标准模块,SOC可以通过MDIO对PHY进行配置或者读取phy相关状态,PHY内部寄存器必须满足

PHY芯片的寄存器地址空间是5位,一般由外部硬件连接决定。地址空间031共32个寄存器,IEEE定义了015这16个寄存器的功能,16-31这16个寄存器由厂商自行实现。也就是说不管哪个厂商的PHY芯片,其中0~15这16个寄存器是一模一样的。

仅靠这 16个寄存器完全可以驱动起PHY芯片,至少能保证基本的网络数据通信。因此 Linux 内核有通用 PHY 驱动,按道理来讲,不管你使用的哪个厂家的 PHY 芯片,都可以使用 Linux 的这个通用 PHY 驱动来验证网络工作是否正常。事实上在实际开发中可能会遇到一些其他的问题导致 Linux 内核的通用 PHY 驱动工作不正常,这个时候就需要驱动开发人员去调试了。

随着现在PHY芯片性能越来越强大,32个寄存器已经无法满足厂商的需求,因此很多厂商采用了分页机制来开展寄存器地址空间,以求定义更多的寄存器。这些多出来的几次器可以实现厂商特有的一些技术,因此在Linux内核里面可以看到很多具体的PHY芯片驱动源码。

Register AddressRegister Name0Control1Status2,3PHY Identifier4Auto-Negotiation Advertisement5Auto-Negotiation Link Partner Base Page Ability6Auto-Negotiation Expansion7Auto-Negotiation Next Page Transmit8Auto-Negotiation Link Partner Received Next Page9MASTER-SLAVER Control Register10MASTER-SLAVE Status Regsiter11PSE Control Register12PSE status Register13MMD Access Control Register14MMD Access Adderss Data Register15Extended Status16~31Vendor Specific 4. 总结

MAC 就是以太网控制器,属于OSI的数字链路层。 phy 属于OSI的物理层(Physical layer),所以叫phy。

MAC主要处理的数字信号

PHY负责把MAC的数字信号进行编码,串行化等操作后,转化为模拟信号进行发送。PHY在数据接受时, 进行如上所述的逆操作,将模拟信号转化为数字信号,解码,并行化后,传给MAC。

基础以太网物理层非常简单:它是一种物理层收发器(发射器和接收器),能将一个设备物理地连接到另一个设备。这种物理连接可以是铜线(例如CAT5电缆——一种家庭使用的蓝色插线电缆)或光纤电缆。 在这里插入图片描述



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3