全国矿产地数据库

您所在的位置:网站首页 中国地图省份分布表 全国矿产地数据库

全国矿产地数据库

2023-10-07 18:16| 来源: 网络整理| 查看: 265

1 引言

矿产地数据库是适应国土资源主管部门和地质勘查、矿产开发管理部门需要而建的。其目的是能够快捷、方便的查询、检索矿产有关资料,同时可以有效地保存地质矿产勘查资料,避免地质资料内在价值的流失,提高矿产地质资料利用价值,使得区域性矿产资料系统化,实现地质基础信息共享及信息社会化服务,也为GIS推广应用准备条件(杨东来等,2001;陆华里和黄宗霞,2006)。

在社会高度信息化的今天,矿产资源潜力评价信息化技术发展迅猛(黄文斌等,2011;赵增玉等,2012,2013;丁永月等,2013;李青元等,2013;武国忠等,2015)。任何矿产勘查、研究类项目的开展都必须建立统一的数据库结构(孙秀波等,2012),对数据库的要求是属性填写的可操作性、属性记录的全面性、与其他库的可衔接性、应用时的便利性以及属性数据间的逻辑性等(汪新庆和冯磊,2013)。全国矿产地数据库是广泛使用的、含有空间位置信息的属性数据库,在矿产资源规划、管理、开发、评价工作中有着重要的意义(汪新庆等,2014)。本文从数据库的角度介绍全国矿产地数据库组成,为矿产资源调查评价、科研教学、矿业开发、规划管理提供了十分重要的基础信息。数据库基本信息见表 1。

表 1Table 1 表 1 数据库(集)元数据简表 条目 描述 数据库(集)名称 全国矿产地数据库 数据库(集)作者 李晨阳,中国地质调查局发展研究中心 刘锋英,中国地质调查局 李 军,山东省国土资源厅信息中心 何春珍,中国地质调查局发展研究中心 王新春,中国地质调查局 王 芳,山东省国土资源厅信息中心 数据时间范围 1995—2003年 地理区域 全国范围 数据量 10.4 MB 数据格式 Access 数据服务系统网址 http://dcc.cgs.gov.cn 基金项目 国土资源大调查数字国土工程项目 (编号:S3.7.1.1-28、19951831012015-12015-065) 语种 中文 数据库(集)组成 全国矿产地数据库包括全国29个省(区、市)、232个矿种、27 569个矿产地信息 表 1 数据库(集)元数据简表 2 数据采集和处理方法 2.1 数据源

全国矿产地数据库是针对中国地质矿产系统各种地质勘查工作,所获得的矿床(点)信息成果资料的数字化建库。数据源包括不同比例尺的区域地质调查、矿产勘查、矿产储量及各种专项地质科研等所获得的矿产地成果资料。全国矿产地数据库建设是以省区为单位进行数据采集(表 2),资料来源主要是各省区域矿产总结、1∶200 000和1∶50 000区调矿产资料及各省矿产储量报告、矿产勘查报告和历年累计填写的矿产地卡片等。

表 2Table 2 表 2 全国矿产地数据库分省矿种统计表 省级行政区 分类矿种数量 分省 总计 黑色 金属 有色 金属 贵金属 稀有 金属 稀土 分散 元素 能源 矿产 非金属 矿产 水气 矿产 北京市 46 8 10 − − − 27 110 − 201 天津市 − − − − − − − − − 0 河北省 204 148 121 1 − − 4 235 − 713 山西省 435 354 71 10 6 25 573 − 1 474 内蒙古自治区 283 555 227 32 9 1 10 387 − 1 504 辽宁省 121 126 77 5 2 − 181 216 2 730 吉林省 39 93 95 − − − − 126 − 353 黑龙江省 21 56 146 5 − − 133 180 − 541 上海市 − − − − − − − − − 0 江苏省 224 238 64 2 4 1 7 96 − 636 浙江省 457 677 300 23 5 − − 758 − 2 220 安徽省 128 104 34 5 1 10 119 253 − 654 福建省 235 472 98 43 131 − 272 1 217 − 2 468 江西省 365 665 76 78 21 1 11 63 1 1 281 山东省 69 47 344 7 2 − 224 240 − 933 河南省 100 142 89 11 − 3 290 256 − 891 湖北省 201 283 115 57 10 2 279 334 − 1 281 湖南省 151 207 29 9 9 1 135 252 − 793 广东省 66 425 67 52 45 − − 135 − 790 广西壮族自治区 195 245 97 6 7 8 170 285 − 1 013 海南省 23 14 4 25 6 1 3 53 − 129 重庆市 4 5 − 3 − − 10 43 − 65 四川省 150 632 220 27 5 1 123 297 − 1 455 贵州省 17 83 15 − 1 − 140 148 − 404 云南省 70 323 46 9 3 − 34 159 − 644 西藏自治区 − 2 1 − − − − − − 3 陕西省 105 153 89 1 − − 22 201 − 571 甘肃省 652 808 250 30 7 − 258 737 − 2 742 青海省 227 273 86 9 2 − 59 183 − 839 宁夏回族自治区 4 3 5 − − − 50 53 − 115 新疆维吾尔族自治区 254 252 197 118 6 4 149 869 − 1 849 台湾省 13 6 16 1 10 − 66 165 − 277 矿种分类小计 4 859 7 399 2 989 569 292 58 2 776 8 624 3 − 总计 27 569 表 2 全国矿产地数据库分省矿种统计表

在全国矿产地数据库建设初期,首先进行的是各省《大中型矿产地数据库》建设,运用当时安徽地矿局提供的大中型矿产地卡片和软件,进行填卡和数据录入。各省所填写的卡片和录入的数据,由于卡片式样、数据格式等与《矿产地数据库建设工作指南》要求差距较大,资料详细情况达不到要求,需要进行认真细致的分析整理,查阅原始资料进行必要的补充,使其符合《矿产地数据库建设工作指南》要求。

相关总结报告等资料。根据区域矿产总结或矿产储量表等相关资料,收集整理各省所有的矿产地,并根据矿种进行分类整理,依据矿产地名称收集更加详细的矿产地情况资料。各省区域矿产总结:①各省(区)1∶200 000区调图幅的矿产资料;②各省(区)1∶50 000区调图幅的矿产资料;③各省(区)矿产储量登记表;④各省(区)已经汇交的矿产勘查报告。

2.2 数据采集

区域矿产研究需要收集矿产地数据库,而目前的矿产地数据库并不完善,填写率不高,属性项设置也不全面,造成进行地学研究时,仍需查阅大量的原始勘查报告。区域矿产研究在查阅数据库的同时,有义务填写矿产地成果数据库,因此需要录入大量原始资料(李林,2006;陆华里和黄宗霞,2006)。同时,全国矿产地数据库数据采集应符合相关技术要求➊(陈毓川等,2010),数据质量合格。

全国矿产地数据库是分省(市、区)进行采集,然后进行综合整理建立全国数据库。在分省(市、区)进行数据采集时主要分为资料的收集与分类整理、矿产地卡片的填写、数据录入建库三大步骤。大中型矿产地是由项目初期建设的《大中型矿产地数据库》转换过来后,进行数据资料的补充修改。

数据采集流程见图 1。

图 1 分省数据采集流程 3 数据样本描述 3.1 数据内容

全国矿产地数据库总共包括18列数据实体,它们分别为:矿产地编号、矿种、矿产地名、交通位置、地理经度、地理纬度、矿床成因类型、共生矿、伴生矿、矿床规模、成矿时代、四级成矿带、地质工作程度和开采情况。详细情况见表 3。

表 3Table 3 表 3 矿产地基本信息属性表 序号 数据项名称 数据项代码 单位 1 矿产地编号 KCAAA 2 矿种 KCC 3 矿产地名 JJDAJ 4 交通位置 JJGLA 5 地理经度 DWAAC 度分秒 6 地理纬度 DWAAD 度分秒 7 矿床成因类型 KCBA 8 共生矿 KCCA 9 伴生矿 KCCB 10 矿床规模 PKGKB 11 成矿时代 KCAOC 12 四级成矿带 KCAOAF 13 地质工作程度 PKD 14 开采情况 JJDCBF 表 3 矿产地基本信息属性表 3.2 数据格式

分省采集数据时,矿产地数据库采用MS Access数据格式。

数据综合建立全国数据库采用大型网络数据库SQL Server和先进的GIS平台ArcGIS进行数据管理。图形化显示空间数据,采用空间数据库引擎 (SDE) 访问空间数据,提供了对空间数据、非空间数据进行高效率操作的数据服务。

4 数据质量控制和评估 4.1 质量控制

数据质量的好坏直接影响数据库使用的可靠性,在数据综合处理过程中,质量的控制尤其重要。在数据处理时首先保证原始数据资料信息的不丢失,再做进一步的完善和修改,缺失数据的补充,特别是矿产地坐标的补充,保证有效数位的正确性。

在“原始”、“复核”与“维护”3套数据库中进行数据选取时的方法控制。在3套数据库中填加识别码,然后将3套数据库合并成1个,根据矿产地名称、交通位置和矿产地编号进行排序,对比同一矿产地数据项内容,选取内容相对完善的保留,不好判断时同时保留并输出由矿产技术人员进行综合处理。

建立完整的质量监控流程,制定工作日志、自检、互检和组检制度。

所有参加数据处理的工作人员,必须填写工作日志,对工作中遇到的问题,处理的数据问题进行记录,并记录问题处理的方法。工作日志由数据处理组长定期检查,并签字认可。

作业员完成1个作业任务后,进行100%的自检,对检查出来的问题进行修改,并填写自检表由组长签字认可。

作业员完成1个作业任务并自检后,由其他作业员进行100%的互检,对检查出来的问题进行修改,并填写互检表由组长签字认可。

由检查员对经过自检和互检后的数据进行不低于20%的抽检,对检查出来的问题由作业员进行修改,并填写组检表由组长签字认可。

该数据集参加人员单位及质量控制人员名单见表 4。

表 4Table 4 表 4 全国矿产地数据库建设主要项目工作人员 成员 总项目 李晨阳、杨东来、何春珍、李军、王新春、刘锋英、王芳、肖志坚、何义权、陈运科、刘伟、王敬洁、丁慧、魏运桂、王新萍、左爱莉、池京云、孔昭煜、曹瑞欣等 北京 姜守玉、刘学清、曹弘 河北 劳晓光、荣桂林、李素荣 山西 李效广、孙春娟、商培林、白智玲、武建斌、张猛、李振国、乔金花、董清雷、李德胜、杨亲民、闫政兴 内蒙古 张梅、霍玫兰、张丽莉 辽宁 李树羽、韩光、曾红、李颖、王晓鸥、乌爱军、单洋天 吉林 戴薪义、陈雷 黑龙江 刘云侠、张重光、付玮、于援邦、程美亭、程继彦、侯敏、王喜臣 江苏 王季顺、赵立鸿、王滨 浙江 袁航、傅浩权、陈潞芳、何忠耀、徐忠连、白世强、张永山、钱鼎兴、蔡子华、潘松林、刘军保、邹霞 福建 温友梦、黄廷淦、王玉文、刘剑凡、蔡明荣、王其连、张明辉、文斐成、李学燮、吴族春、张引娥 江西 赖新平、唐维新、叶景平、赵赣、李中兰、梅勇文、曾祥福、黄常立、顾敏、刘军、滑舸、徐涛、赵鸣雍、林伟平、崔学军、高维敬、范文顺、喻晓平、楼法生、黄长生、刘邦秀 安徽 姚尚志、楼金伟、褚进海、沈荷生、胡亚娟、许巨平、沈荷生、王徽、杨承雄、刘继荣、王义梅 山东 史辉、任志康、刘福魁、孔艳、张相峰、张帆、梁凤英、李广伟、鞠茂盛、苗喜、王鹤力、史辉、李军、任志康 河南 宋锋、王卫、强立志、戴耕、杜春彦、林世芳、关保德、朱学立、燕长海 湖北 毛晓梅、于庆阳、杨首亚、胡清乐、李萍、胡运芝、李江洲、谭秋明、杨志甫、刘忠明、张万平、孟宪均、熊意林 湖南 贺安生、权正钰、潘莉、彭朝冰、郭征、周友利、周杨、秦晓莉、李倩、黎波、刘普、张建新、赵强 广东 杨慧、邓勇、揭江、罗剑 广西 李文鑫、马隆文、刘明章、陈屹、黄志强、史亚玲、刘筱华、黄宗霞、郑莉莉、何翠云、李文鑫、张亚才、宁雄荣 海南 吴丹、陈育文、黄正壮 四川 周绍东、胡明明、文辉 贵州 张泽标 云南 周耀军、李定平 陕西 沙江、付周启、谌艳玲、王根宝、谢晓波、付周启、肖爱芳、丰文庆 甘肃 徐东、杜录平、李文胜、刘建宏、李通国、单永杰 青海 周光第、孙崇仁、曹生秀、蔡秋青、许长青、刘永安、王占昌、付宝侠 宁夏 杨光道、王振藩、朱鸿宾、李军、吴耀光、孟方、沈玉玲、刘惠敏 新疆 肖志坚、姜云辉、胡建卫、冯京、程建新、孙卫东、姜云辉、潘朝霞、郑启平、冯京、王庆明 台湾 连天萍、陈月仙、江剑丽、吴克隆 表 4 全国矿产地数据库建设主要项目工作人员 4.2 质量评述

全国矿产地数据库综合处理前,各省提交的矿产地数据库质量好坏不一,存在着各种各样的错误或误差,主要是矿产地坐标、交通位置、矿产地编号、地质描述、代码、数据表之间的关系等。

经过综合处理最大程度地修改了数据错误,减少了数据误差,提高了数据质量。通过综合处理对数据中的地质描述进行了合理化修改,对缺失的坐标根据交通位置和其它资料进行了补充,对不合理的代码进行替换,对数据表之间的关系进行了修改,使综合处理过的数据符合标准要求。

5 结论

全国矿产地数据库系统地展示了全国各个矿床综合信息,包括矿产地基本情况、矿区地质情况、矿体特征、开发技术条件等等,信息量巨大。全国矿产地数据库作为国家重要基础地质数据库,有效的保存了国家地质矿产勘查成果资料,内容涵盖行业系统中各单位完成的固体矿产、能源矿产(不含油气矿产)、化工原料非金属矿产、建筑材料非金属矿产等大、中、小型矿产地、矿点及矿化点的详细信息。全国矿产地数据库的建库工作对于中国资源潜力评价和矿产资源预测具有重要的参考价值,同时为中国矿产资源研究提供重要科学数据基础。

致谢:全国矿产地数据库是在原地质矿产部地质调查局、中国地质调查局领导下,由各省地质勘查、地质调查信息化工作部门以及中国地质调查局发展研究中心有关项目组共同努力下完成的(各省区市主要人员名单见表4)。全国矿产地数据库成果凝聚了先后参加工作近200名同志的心血和汗水。

本项目组在执行过程中,先后引用了叶天竺、黄崇轲项目组的1∶500 000和1∶2 500 000地质图/地理图空间数据库,王全明、朱裕生项目组的成矿区带数据。在数据综合过程中,得到了山东省国土资源信息中心及其他单位的大力支持,先后有王天君、辛正运、陈运科等参加了最后阶段的工作。本项目得到了发展研究中心领导和职能部门的大力支持,为项目组解决了设备、资金、人力资源调整等难题。还得到了李裕伟、黄崇轲等老一辈专家的无私帮助,得到了陈辉、黄笑梅、朗宝平等同志的指导与帮助。

在此,全国矿产地数据库项目组对先后参加与支持过的同志表示衷心感谢。

注释:

➊ 陈郑辉. 2015. 全国省(自治区、直辖市)矿产地质与区域成矿规律综合研究(矿产地质志)技术要求[R]. 北京: 中国地质科学院矿产资源研究所, 1−30.

1 Introduction

The National Mineral Deposit Database was created to meet the needs of the Ministry of Land and Resources and the institutions of geological exploration and mineral resources development and management in China. The purpose of this project is to quickly and conveniently visit and retrieve minerals-related data and preserve geological mineral exploration data, so as to avoid the loss of the intrinsic value of and improve the utilization value of geological data on mineral resources. It also serves to systemize regional mineral data, thereby promoting the sharing of fundamental geological information and relevant social information services and providing a solid ground for the spread and application of GIS (Yang DL et al., 2001; Lu HL and Huang ZX, 2006).

Information technology aimed at evaluating the potential of mineral resources is developing rapidly in a world that is getting increasingly informatized (Huang WB et al., 2011; Zhao ZY et al., 2012, 2013; Ding YY et al., 2013; Li QY et al., 2013; Wu GZ et al., 2015). In this context, it is essential to establish a unified database structure for the development of any mineral exploration and research project (Sun XB et al., 2012). The database requirements include operability of attribute inputs, comprehensiveness of attribute recording, ability to connect with other libraries, convenience of application, and logicality in attributes (Wang XQ and Feng L, 2013). The National Mineral Deposit Database is a widely used attribute database that contains spatial location information. It has great significance to the fields of planning, management, development and evaluation of mineral resources (Wang XQ et al., 2014). This paper introduces the composition of the National Mineral Deposit Database from the perspective of the database, which provides an important basic information for research and evaluation of mineral resources, academic research, mining development, and planning and management. The basic information of the database is as shown in Table 1.

表 1Table 1 Table 1 Metadata Table of Database (Dataset) Items Description Database(dataset) name National Mineral Deposit Database of China Database(dataset) authors Li Chenyang, Development and Research Center of China Geological Survey; Liu Fengying, China Geological Survey; Li Jun, Shandong Provincial Information Center of Land and Resources; He Chunzhen, Development and Research Center of China Geological Survey; Wang Xinchun, Development and Research Center of China Geological Survey; Wang Fang, Shandong Provincial Information Center of Land and Resources; Data acquisition time 1995—2003 Geographic area Nationwide of China Data format Access Data size 10.4 MB Data service system URL http://dcc.cgs.gov.cn Fund project Digital Land Project of Geological Survey Program of China Geological Survey (S3.7.1.1-28、19951831012015-065) Language Chinese Database(dataset) composition Deposit information of 232 types of mineral resources and27 569 deposits in 29 provinces (cities, districts). Table 1 Metadata Table of Database (Dataset) 2 Data Collection and Processing 2.1 Data Source

The National Mineral Deposit Database is a digital database of results collected from mineral deposits (mineralized points). It is based on various geological exploration works carried out by the geological and mineral resources institutions in China. Data sources include mineral resources data obtained from different scales, such as regional geological survey, mineral exploration, mineral reserves, and various special geological research. The establishment of the National Mineral Deposit Database is based on data collection by provinces and districts (Table 2). The sources of data mainly include the mineral resources summaries provided by provinces and districts, the 1∶200 000 and 1∶50 000 regional mineral resources reports, provincial mineral reserves reports, mineral exploration reports, and mineral deposit cards accumulated over the years.

表 2Table 2 Table 2 Statistics of Deposits by Provinces in the National Mineral Deposit Database Province Number of classified mineral deposits Subtotal Ferrous metal Non-ferrous metal Precious metal Rare metals Rare earths Disperse elements Energy resources Nonmetallic deposit aqueous gas Beijing 46 8 10 − − − 27 110 − 201 Tianjin − − − − − − − − − 0 Hebei 204 148 121 1 − − 4 235 − 713 Shanxi 435 354 71 10 6 25 573 − 1 474 Inner Mongolia Autonomous Region 283 555 227 32 9 1 10 387 − 1 504 Liaoning 121 126 77 5 2 − 181 216 2 730 Jilin 39 93 95 − − − − 126 − 353 Heilongjiang 21 56 146 5 − − 133 180 − 541 Shanghai − − − − − − − − − 0 Jiangsu 224 238 64 2 4 1 7 96 − 636 Zhejiang 457 677 300 23 5 − − 758 − 2 220 Anhui 128 104 34 5 1 10 119 253 − 654 Fujian 235 472 98 43 131 272 1 217 − 2 468 Jiangxi 365 665 76 78 21 1 11 63 1 1 281 Shandong 69 47 344 7 2 224 240 933 Henan 100 142 89 11 3 290 256 891 Hubei 201 283 115 57 10 2 279 334 1 281 Hunan 151 207 29 9 9 1 135 252 793 Guangdong 66 425 67 52 45 135 790 Guangxi Zhuang Autonomous Region 195 245 97 6 7 8 170 285 1 013 Henan 23 14 4 25 6 1 3 53 129 Chongqing 4 5 3 10 43 65 Sichuan 150 632 220 27 5 1 123 297 1 455 Guizhou 17 83 15 1 140 148 404 Yunan 70 323 46 9 3 − 34 159 644 Tibet Autonomous Region 2 1 3 Shaanxi 105 153 89 1 22 201 571 Gansu 652 808 250 30 7 258 737 2 742 Qinghai 227 273 86 9 2 59 183 − 839 Ningxia Hui Autonomous Region 4 3 5 − − − 50 53 − 115 Xinjiang Uygur Autonomous Region 254 252 197 118 6 4 149 869 − 1 849 Taiwan 13 6 16 1 10 − 66 165 − 277 Subtotal 4 859 7 399 2 989 569 292 58 2 776 8 624 3 Total 27 569 Table 2 Statistics of Deposits by Provinces in the National Mineral Deposit Database

The establishment of the National Mineral Deposit Database started with the creation of the “Large and Medium Scale Mineral Deposit Database” by the provinces. In the initial phase, the database used large and medium scale mineral deposit cards and software provided by the Anhui Geological and Mineral Resources Bureau to fill the cards and input data. As there is a significant difference between the card patterns and formats of data entered by the provinces and the requirements of the Guidelines for the Establishment of Mineral Deposit Database, data details do not meet the requirements. Therefore, it is necessary to carry out a careful analysis and review original data to make supplements so that it conforms to the requirements of those guidelines.

Relevant Summaries and Other Information. Based on the summaries of regional mineral resources or reserves, submissions by provinces were collected, classified, and collated. Later on, details about each deposit were collected per respective names. Regional mineral resources summaries by provinces include: (1) mineral resources data in the 1∶200 000 regional survey maps by provinces (districts); (2) mineral resources data in the 1∶50 000 regional survey maps by provinces (districts); (3) the mineral reserves statistics tables by provinces (districts); and (4) the delivered mineral exploration reports by provinces (districts).

2.2 Data Acquisition

It is necessary to establish a deposits database in order to conduct researches on regional mineral resources. However, the current mineral deposit database is not yet complete; its filling rate is low and attributes have an incomplete setting. In this situation, there is a need to consult a large number of original exploration reports during the earth science research. Moreover, while researching on regional mineral resources, it is essential to fill in the vacancies in mineral deposit database when the library is consulted. At the same time, it is necessary to input a large amount of original data (Li L, 2006; Lu HL and Huang ZX, 2006). Meanwhile, the data acquisition for the National Mineral Deposit Database should meet the relevant technical requirements (Chen YC et al., 2010; Chen ZH, 2015) and the data quality should be qualified.

Data acquisition for the National Mineral Deposit Database was conducted by provinces (cities and districts), and then a nationwide database was integrated and established. There were three main steps to collect the data: data collection and sorting, mineral deposit card filling, and data entry into the database. Large and medium scale mineral deposit data were transferred and amended from the “Large and Medium Scale Mineral Deposit Database”, which was built in the early stage of the project.

See Fig. 1 for the workflow of data acquisition.

Fig. 1 Workflow of Data Acquisition by Provinces 3 Description of Data Samples 3.1 Data Content

The following 18 data attributes have been included in the National Mineral Deposit Database: Deposit Number, Ore Species, Deposit Name, Location, Longitude, Latitude, Genetic Type of Deposit, Paragenetic Mineral, Associated Mineral, Deposit Scale, Ore-forming age, Fourth-Order Mineralogenetic Belt, Level of Geological Survey, and Mining Situation. The details are shown in Table 3.

表 3Table 3 Table 3 Basic information attribute table of the mineral deposits No. Data item name Data item code Unit 1 Deposit Number KCAAA 2 Ore Species KCC 3 Deposit Name JJDAJ 4 Location JJGLA 5 Longitude DWAAC degrees (°), minutes ('), seconds ('') 6 Latitude DWAAD degrees (°), minutes ('), seconds ('') 7 Genetic Type of Mineral Deposit KCBA 8 Paragenetic Mineral KCCA 9 Associated Mineral KCCB 10 Deposit Scale PKGKB 11 Ore-forming Age KCAOC 12 Fourth-Order Mineralogenetic Belt KCAOAF 13 Level of Geological Survey PKD 14 Mining Situation JJDCBF Table 3 Basic information attribute table of the mineral deposits 3.2 Data Format

During data acquisition by provinces, the mineral deposit database adopted the MS Access data format.

As to the integration and creation of the nationwide database, the large network database SQL Server and the advanced GIS platform ArcGIS have been used for data management. To access graphic spatial data, the spatial database engine (SDE) has been adopted to provide highly efficient data services to spatial data and non-spatial data.

4 Data Quality Control and Evaluation 4.1 Quality Control

Data quality directly affects the reliability of the database and it is of particular significance in the process of integrated data processing. During data processing, it was first ensured that no original data information was lost. Later on, further improvements and modifications were made and missing data was supplemented, especially the coordinates of deposits, to ensure the correctness of the effective numbers.

With regard to data selection approach, identification codes were first assigned in the three databases during the process of creating, checking, and maintaining the said databases. Later on, they were combined into a single database and data was sorted by deposit name, location, and deposit number. At the same time, similar deposit contents were compared and the most complete ones were saved. Moreover, when it was difficult to make a judgment, multiple contents were saved and respective outputs were generated for further consideration by mining technicians.

Furthermore, a complete quality control workflow and systems of logging, self-examination, mutual inspection, and group inspection were established.

All the data processing staff filled in work logs, recorded emerging problems, and documented methods used to deal with the problems. The working log was periodically checked, signed and approved by the data processing team leader.

After the completion of an assignment, the operator performed 100% self-examination, amended the inspected problems, filled in a self-examination form, and submitted the same to the team leader for approval.

Subsequently, other operators performed 100% mutual inspection, amended the problems, filled in the mutual inspection form, and submitted the same to the team leader for approval.

After self-examination and mutual inspection, at least 20% of data were randomly checked by inspectors, who also amended the problems, filled in the group inspection form, and submitted the same to the team leader for approval.

See Table 4 for the team members and QC staff of the database.

表 4Table 4 Table 4 Team Members of the National Mineral Deposit Database Project Names Total Projects Li Chenyang, Yang Donglai, He Chunzhen, Li Jun, Wang Xinchun, Liu Fengying, Wang Fang, Xiao Zhijian, He Yiquan, Chen Yunke, Liu Wei, Wang Jingjie, Ding Hui, Wei Yungui, Wang Xinping, Zuo Aili, Chi Jingyun, Kong Zhaoyu, and Cao Ruixin, etc. Beijing Jiang Shouyu, Liu Xueqing and Cao Hong Hebei Lao Xiaoguang, Rong Guilin and Li Surong Shanxi Li Xiaoguang, Sun Chunjuan, Shang Peilin, Bai Zhiling, Wu Jianbin, Zhang Meng, Li Zhenguo, Qiao Jinhua, Dong Qinglei, Li Desheng, Yang Qinmin and Yan Zhengxing Inner Mongolia Zhang Mei, Huo Meilan and Zhang Lili Liaoning Li Shuyu, Han Guang, Zeng Hong, Li Ying, Wang Xiao'ou, Wu Aijun and Shan Yangtian Jilin Dai Xinyi and Chen Lei Heilongjiang Liu Yunxia, Zhang Chongguang, Fu Wei, Yu Yuanbang, Cheng Meiting, Cheng Jiyan, Hou Min and Wang Xichen Jiangsu Wang Jishun, Zhao Lihong and Wang Bin Zhejiang Yuan Hang, Fu Haoquan, Chen Lufang, He Zhongyao, Xu Zhonglian, Bai Shiqiang, Zhang Yongshan, Qian Dingxing, Cai Zihua, Pan Songlin, Liu Junbao and Zou Xia Fujian Wen Youmeng, Huang Tinggan, Wang Yuwen, Liu Jianfan, Cai Mingrong, Wang Qilian, Zhang Minghui, Wen Feicheng, Li Xuexie, Wu Zuchun and Zhang Yin'e Jiangxi Lai Xinping, Tang Weixin, Ye Jingping, Zhao Gan, Li Zhonglan, Mei Yongwen, Zeng Xiangfu, Huang Changli, Gu Min, Liu Jun, Hua Ge, Xu Tao, Zhao Mingyong, Lin Weiping, Cui Xuejun, Gao Weijing, Fan Wenshun, Yu Xiaoping, Lou Fasheng, Huang Changsheng and Liu Bangxiu Anhui Yao Shangzhi, Lou Jinwei, Chu Jinhai, Shen Hesheng, Hu Yajuan, Xu Juping, Shen Hesheng, Wang Hui, Yang Chengxiong, Liu Jirong and Wang Yimei Shandong Shi Hui, Ren Zhikang, Liu Fukui, Kong Yan, Zhang Xiangfeng, Zhang Fan, Liang Fengying, Li Guangwei, Ju Maosheng, Miao Xi, Wang Heli, Shi Hui, Li Jun and Ren Zhikang Henan Song Feng, Wang Wei, Qiang Lizhi, Dai Geng, Du Chunyan, Lin Shifang, Guan Baode, Zhu Xueli and Yan Changhai Hubei Mao Xiaomei, Yu Qingyang, Yang Shouya, Hu Qingle, Li Ping, Hu Yunzhi, Li Jiangzhou, Tan Qiuming, Yang Zhifu, Liu Zhongming, Zhang Wanping, Meng Xianjun and Xiong Yilin Hunan He Ansheng, Quan Zhengyu, Pan Li, Peng Chaobing, Guo Zheng, Zhou Youli, Zhou Yang, Qin Xiaoli, Li Qian, Li Bo, Liu Pu, Zhang Jianxin and Zhao Qiang Guangdong Yang Hui, Deng Yong, Jie Jiang and Luo Jian Guangxi Li Wenxin, Ma Longwen, Liu Mingzhang, Chen Yi, Huang Zhiqiang, Shi Yaling, Liu Xiaohua, Huang Zongxia, Zheng Lili, He Cuiyun, Li Wenxin, Zhang Yacai and Ning Xiongrong Hainan Wu Dan, Chen Yuwen and Huang Zhengzhuang Sichuan Zhou Shaodong, Hu Mingming and Wen Hui Guizhou Zhang Zebiao Yunnan Zhou Yaojun and Li Dingping Shaanxi Sha Jiang, Fu Zhouqi, Shen Yanling, Wang Genbao, Xie Xiaobo, Fu Zhouqi, Xiao Aifang and Feng Wenqing Gansu Xu Dong, Du Luping, Li Wensheng, Liu Jianhong, Li Tongguo and Shan Yongjie Qinghai Zhou Guangdi, Sun Chongren, Cao Shengxiu, Cai Qiuqing, Xu Changqing, Liu Yong'an, Wang Zhanchang and Fu Baoxia Ningxia Yang Guangdao, Wang Zhenfan, Zhu Hongbin, Li Jun, Wu Yaoguang, Meng Fang, Shen Yuling and Liu Huimin Xinjiang Xiao Zhijian, Jiang Yunhui, Hu Jianwei, Feng Jing, Cheng Jianxin, Sun Weidong, Jiang Yunhui, Pan Zhaoxia, Zheng Qigping, Feng Jing and Wang Qingming Taiwan Lian Tianping, Chen Yuexian, Jiang Jianli and Wu Kelong Table 4 Team Members of the National Mineral Deposit Database Project 4.2 Quality Review

Before the integrated processing of the National Mineral Deposit Database, the quality of mineral deposit data submitted by the provinces varied significantly. There were a large number of faults and errors, mainly in the documents of coordinates of deposits, locations, deposit numbers, geological descriptions, codes, and connections between data tables.

After the integrated processing, the research team did its best to eliminate faults, reduce errors, and improve data quality. By reasonably modifying geological descriptions in the data through integrated processing, the missing coordinates were filled in according to the locations and other data. At the same time, invalid codes were replaced and connections between data tables were modified to meet the standard requirements.

5 Conclusion

The National Mineral Deposit Database features systematic and integrated information about all mineral deposits in the country, including the basic situation of deposits, geological conditions of ore deposits, characteristics of ore bodies, conditions of extraction techniques, and other information. As an important national geological database, it effectively documents the results of national geology and mineral resources exploration. The database covers the results of each team in the industry, including solid minerals, energy resources (excluding oil & gas), chemical raw materials of non-metallic minerals, building materials of non-metallic minerals, details of large, medium and small-scale deposits, mineral occurrences, and mineralization outcrops. The National Mineral Deposit Database supports the assessment of potential resources and mineral resources prediction in China. It also provides the scientific basis for future mineral resources research in China.

Acknowledgements: Under the leadership of the former Geological Survey of the Ministry of Geology and Mineral Resources and the China Geological Survey (before 2001), the National Mineral Deposit Database of China was completed by the joint efforts of provincial geological survey groups, provincial geological data information departments, and relevant project groups of the Development and Research Center of China Geological Survey (see appendix for the name list of major provincial leaders). This database is a product of efforts of nearly 200 collaborators who participated in the work. Moreover, while executing this project, we used and cited the 1∶500 000 and 1∶2 500 000 geological map/geographic map and spatial database of Ye Tianzhu and Huang Chongke group and the mineral deposit belts data of Wang Quanming and Zhu Yusheng group. In the process of data integration, this project was strongly supported by the Shandong Provincial Land and Resources Information Center and other institutions. Wang Tianjun, Xin Zhengyun and Chen Yunke participated in the last stage of the project. This project was also strongly supported by the leaders and functional departments of the Development and Research Center of CGS, who helped solve the problems of equipment, capital and human resources for the project group. This project group also received help from senior experts such as Li Yuwei and Huang Chongke, and was instructed and assisted by peers and collaborators such as Chen Hui, Huang Xiaomei and Lang Baoping. Here, the National Mineral Deposit Database project group expresses its heartfelt thanks to the comrades who have participated and supported us. Susan Turner (Brisbane) assisted with English.



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3