高等数学(七)

您所在的位置:网站首页 xy对x求偏导再对y求偏导 高等数学(七)

高等数学(七)

2024-02-24 08:02| 来源: 网络整理| 查看: 265

本节为高等数学复习笔记的第七部分,多元函数微分学(1),主要包括:多元微分法求多元偏导数 。

1. 多元微分法:多元求偏导

   ( 1 ) f ( x , y ) , 固 定 一 个 变 量 , 对 另 一 个 变 量 求 导 , 即 (1)f(x,y),固定一个变量,对另一个变量求导,即 (1)f(x,y),固定一个变量,对另一个变量求导,即: ∂ f ( x , y ) ∂ x = f x ′ ( x , y ) \frac{\partial f(x,y)}{\partial x}=f'_x(x,y) ∂x∂f(x,y)​=fx′​(x,y), ∂ f ( x , y ) ∂ y = f y ′ ( x , y ) \frac{\partial f(x,y)}{\partial y}=f'_y(x,y) ∂y∂f(x,y)​=fy′​(x,y)

( 2 ) 链 式 求 导 (2)链式求导 (2)链式求导:

   z = f ( u , v , w ) z=f(u,v,w) z=f(u,v,w), u = u ( x , y ) u=u(x,y) u=u(x,y), v = v ( x ) v=v(x) v=v(x), w = w ( y ) w=w(y) w=w(y), 则 ∂ z ∂ x = ∂ z ∂ u ⋅ ∂ u ∂ x + ∂ z ∂ v ⋅ ∂ v ∂ x 则\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\cdot\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\cdot\frac{\partial v}{\partial x} 则∂x∂z​=∂u∂z​⋅∂x∂u​+∂v∂z​⋅∂x∂v​

( 3 ) 高 阶 偏 导 数 (3)高阶偏导数 (3)高阶偏导数:

   二 阶 偏 导 二阶偏导 二阶偏导: ∂ ( ∂ z ∂ x ) ∂ x = ∂ 2 z ∂ x \frac{\partial(\frac{\partial z}{\partial x})}{\partial x}=\frac{\partial^2z }{\partial x} ∂x∂(∂x∂z​)​=∂x∂2z​

   二 阶 混 合 偏 导 二阶混合偏导 二阶混合偏导: ∂ ( ∂ z ∂ x ) ∂ y = ∂ 2 z ∂ x ∂ y \frac{\partial(\frac{\partial z}{\partial x})}{\partial y}=\frac{\partial^2z }{\partial x\partial y} ∂y∂(∂x∂z​)​=∂x∂y∂2z​

e g 1 ( 显 函 数 ) . eg1(显函数). eg1(显函数). 设 z = f ( e x s i n y , x 2 + y 2 ) , 其 中 f 具 有 设z=f(e^xsiny,x^2+y^2),其中f具有 设z=f(exsiny,x2+y2),其中f具有 二 阶 连 续 偏 导 数 二阶连续偏导数 二阶连续偏导数, 求 ∂ 2 x ∂ x ∂ y 求\frac{\partial^2x}{\partial x\partial y} 求∂x∂y∂2x​。    解 : 解: 解: ∂ z ∂ x = e x s i n y f 1 ′ + 2 x f 2 ′ \frac{\partial z}{\partial x}=e^xsinyf_1'+2xf_2' ∂x∂z​=exsinyf1′​+2xf2′​,

   ∂ 2 x ∂ x ∂ y = ∂ ( ∂ z ∂ x ) ∂ y = ∂ ( f 1 ′ e x s i n y ) ∂ y + ∂ ( f 2 ′ ⋅ 2 x ) ∂ y \frac{\partial^2x}{\partial x\partial y}=\frac{\partial(\frac{\partial z}{\partial x})}{\partial y}=\frac{\partial(f_1'e^xsiny)}{\partial y}+\frac{\partial(f_2'\cdot 2x)}{\partial y} ∂x∂y∂2x​=∂y∂(∂x∂z​)​=∂y∂(f1′​exsiny)​+∂y∂(f2′​⋅2x)​ = ∂ f 1 ′ ∂ y ⋅ e x s i n y + f 1 ′ e x c o s y + 2 x ∂ f 2 ′ ∂ y =\frac{\partial f_1'}{\partial y}\cdot e^xsiny+f_1'e^xcosy+2x\frac{\partial f_2'}{\partial y} =∂y∂f1′​​⋅exsiny+f1′​excosy+2x∂y∂f2′​​,

   又 ∂ f 1 ′ ∂ y = f 11 ′ ′ ⋅ e x c o s y + f 12 ′ ′ ⋅ 2 y 又\frac{\partial f_1'}{\partial y}=f_{11}''\cdot e^xcosy+f_{12}''\cdot 2y 又∂y∂f1′​​=f11′′​⋅excosy+f12′′​⋅2y,         ∂ f 2 ′ ∂ y = f 21 ′ ′ ⋅ e x c o s y + f 22 ′ ′ ⋅ 2 y \ \ \ \ \frac{\partial f_2'}{\partial y}=f_{21}''\cdot e^xcosy+f_{22}''\cdot 2y     ∂y∂f2′​​=f21′′​⋅excosy+f22′′​⋅2y,

   ∴ ∂ 2 x ∂ x ∂ y = f 11 ′ ′ e 2 x s i n y c o s y + 2 e x ( y s i n y + x c o s y ) f 12 ′ ′ \therefore \frac{\partial^2x}{\partial x\partial y}=f_{11}''e^{2x}sinycosy+2e^x(ysiny+xcosy)f_{12}'' ∴∂x∂y∂2x​=f11′′​e2xsinycosy+2ex(ysiny+xcosy)f12′′​ + 4 x y f 22 ′ ′ + f 1 ′ e x c o s y +4xyf_{22}''+f_1'e^xcosy +4xyf22′′​+f1′​excosy。

e g 2 ( 隐 函 数 ) . eg2(隐函数). eg2(隐函数). 设 z = z ( x , y ) 由 方 程 F ( x + z y , y + z x ) 确 定 设z=z(x,y)由方程F(x+\frac zy,y+\frac zx)确定 设z=z(x,y)由方程F(x+yz​,y+xz​)确定, 其 中 F 有 连 续 偏 导 数 其中F有连续偏导数 其中F有连续偏导数, 求 : x ⋅ ∂ z ∂ x + y ⋅ ∂ z ∂ y 求:x\cdot \frac{\partial z}{\partial x}+y\cdot \frac{\partial z}{\partial y} 求:x⋅∂x∂z​+y⋅∂y∂z​.

   解 : 解: 解:    方 法 一 : 将 方 程 两 边 分 别 对 x , y 求 偏 导 数 得 方法一:将方程两边分别对x,y求偏导数得 方法一:将方程两边分别对x,y求偏导数得: 1 ) F 1 ′ ( 1 + 1 y ∂ z ∂ x ) + F 2 ′ ( − z x 2 + 1 x ∂ z ∂ x ) = 0 1)F_1'(1+\frac1y\frac{\partial z}{\partial x})+F_2'(-\frac{z}{x^2}+\frac1x\frac{\partial z}{\partial x})=0 1)F1′​(1+y1​∂x∂z​)+F2′​(−x2z​+x1​∂x∂z​)=0 ⟹ \Longrightarrow ⟹

   x F 1 ′ + y F 2 ′ x y ∂ z ∂ x = z x 2 F 2 ′ − F 1 ′ \frac{xF_1'+yF_2'}{xy}\frac{\partial z}{\partial x}=\frac{z}{x^2}F_2'-F_1' xyxF1′​+yF2′​​∂x∂z​=x2z​F2′​−F1′​

2 ) F 1 ′ ( − z y 2 + 1 y ∂ z ∂ y ) + F 2 ′ ( 1 + 1 x ∂ z ∂ y ) = 0 2)F_1'(-\frac{z}{y^2}+\frac1y\frac{\partial z}{\partial y})+F_2'(1+\frac1x\frac{\partial z}{\partial y})=0 2)F1′​(−y2z​+y1​∂y∂z​)+F2′​(1+x1​∂y∂z​)=0 ⟹ \Longrightarrow ⟹

   x F 1 ′ + y F 2 ′ x y ∂ z ∂ y = z y 2 F 1 ′ − F 2 ′ \frac{xF_1'+yF_2'}{xy}\frac{\partial z}{\partial y}=\frac{z}{y^2}F_1'-F_2' xyxF1′​+yF2′​​∂y∂z​=y2z​F1′​−F2′​ ⟹ \Longrightarrow ⟹    ∂ z ∂ x = y z x F 2 ′ − x y F 1 ′ x F 1 ′ + y F 2 ′ \frac{\partial z}{\partial x}=\frac{\frac{yz}{x}F_2'-xyF_1'}{xF_1'+yF_2'} ∂x∂z​=xF1′​+yF2′​xyz​F2′​−xyF1′​​, ∂ z ∂ y = x z y F 1 ′ − x y F 2 ′ x F 1 ′ + y F 2 ′ \frac{\partial z}{\partial y}=\frac{\frac{xz}{y}F_1'-xyF_2'}{xF_1'+yF_2'} ∂y∂z​=xF1′​+yF2′​yxz​F1′​−xyF2′​​ ⟹ \Longrightarrow ⟹    x ∂ z ∂ x + y ∂ z ∂ x = z − x y x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial x}=z-xy x∂x∂z​+y∂x∂z​=z−xy

   方 法 二 : 方法二: 方法二:    对 方 程 全 微 分 , F 1 ′ ⋅ d ( x + z y ) + F 2 ′ ⋅ d ( y + z x ) = 0 对方程全微分,F_1'\cdot d(x+\frac zy)+F_2'\cdot d(y+\frac zx)=0 对方程全微分,F1′​⋅d(x+yz​)+F2′​⋅d(y+xz​)=0

   有 F 1 ′ ⋅ ( d x + y d z − z d y y 2 ) + F 2 ′ ⋅ ( d y + x d z − z d x x 2 ) = 0 有F_1'\cdot(dx+\frac{ydz-zdy}{y^2})+F_2'\cdot(dy+\frac{xdz-zdx}{x^2})=0 有F1′​⋅(dx+y2ydz−zdy​)+F2′​⋅(dy+x2xdz−zdx​)=0

   有 : 有: 有: ( F 1 ′ 1 y + F 2 ′ 1 x ) d z = ( − F 1 ′ + z x 2 F 2 ′ ) d x + ( − F 2 ′ + z y 2 F 1 ′ ) d y (F_1'\frac1y+F_2'\frac1x)dz=(-F_1'+\frac z{x^2}F_2')dx+(-F_2'+\frac z{y^2}F_1')dy (F1′​y1​+F2′​x1​)dz=(−F1′​+x2z​F2′​)dx+(−F2′​+y2z​F1′​)dy

   两 边 同 乘 x y 两边同乘xy 两边同乘xy: ( x F 1 ′ + y F 2 ′ ) d z = ( − x y F 1 ′ + y z x F 2 ′ ) d x + ( − x y F 2 ′ + x z y F 1 ′ ) d y (xF_1'+yF_2')dz=(-xyF_1'+\frac {yz}{x}F_2')dx+(-xyF_2'+\frac {xz}{y}F_1')dy (xF1′​+yF2′​)dz=(−xyF1′​+xyz​F2′​)dx+(−xyF2′​+yxz​F1′​)dy ⟹ \Longrightarrow ⟹    ∂ z ∂ x = y z x F 2 ′ − x y F 1 ′ x F 1 ′ + y F 2 ′ \frac{\partial z}{\partial x}=\frac{\frac{yz}{x}F_2'-xyF_1'}{xF_1'+yF_2'} ∂x∂z​=xF1′​+yF2′​xyz​F2′​−xyF1′​​, ∂ z ∂ y = x z y F 1 ′ − x y F 2 ′ x F 1 ′ + y F 2 ′ \frac{\partial z}{\partial y}=\frac{\frac{xz}{y}F_1'-xyF_2'}{xF_1'+yF_2'} ∂y∂z​=xF1′​+yF2′​yxz​F1′​−xyF2′​​ ⟹ \Longrightarrow ⟹    x ∂ z ∂ x + y ∂ z ∂ x = z − x y x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial x}=z-xy x∂x∂z​+y∂x∂z​=z−xy

欢迎扫描二维码关注微信公众号 深度学习与数学   [每天获取免费的大数据、AI等相关的学习资源、经典和最新的深度学习相关的论文研读,算法和其他互联网技能的学习,概率论、线性代数等高等数学知识的回顾] 在这里插入图片描述



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3