高稳定性金属有机骨架UiO

您所在的位置:网站首页 uio-66什么颜色 高稳定性金属有机骨架UiO

高稳定性金属有机骨架UiO

2024-03-02 03:49| 来源: 网络整理| 查看: 265

[1] Rowsell J L C,YaghiO M. Metal-Organic Frameworks:A New Class of Porous Materials[J]. Micropor Mesopor Mater,2004,73(1/2):3-14.[1] Rowsell J L C,YaghiO M. Metal-Organic Frameworks:A New Class of Porous Materials[J]. Micropor Mesopor Mater,2004,73(1/2):3-14.

[2] OckwigN W,O'Keeffe M,YaghiO M,et al. Reticular Chemistry:Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks[J]. Acc Chem Res,2005,38(3):176-182.[2] OckwigN W,O'Keeffe M,YaghiO M,et al. Reticular Chemistry:Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks[J]. Acc Chem Res,2005,38(3):176-182.

[3] Furukawa H,Cordova K E,O'Keeffe M,et al. The Chemistry and Applications of Metal-Organic Frameworks[J]. Science,2013,341(1230444):974-986.[3] Furukawa H,Cordova K E,O'Keeffe M,et al. The Chemistry and Applications of Metal-Organic Frameworks[J]. Science,2013,341(1230444):974-986.

[4] Eddaoudi M,Kim J,Rosi N,et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage[J]. Science,2002,295(5554):469-472.[4] Eddaoudi M,Kim J,Rosi N,et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage[J]. Science,2002,295(5554):469-472.

[5] Rowsel J L C,Yaghi O M. Strategies for Hydrogen Store in Metal-Organic Frame Works[J]. Angew Chem Int Ed,2005,44(30):4670-4679.[5] Rowsel J L C,Yaghi O M. Strategies for Hydrogen Store in Metal-Organic Frame Works[J]. Angew Chem Int Ed,2005,44(30):4670-4679.

[6] Jia J H,Lin X,Wilson C,et al. Twelve-connected Porous Metal-Organic Frameworks with High H2 Adsorption[J]. Chem Commun,2007,(8):840-842.[6] Jia J H,Lin X,Wilson C,et al. Twelve-connected Porous Metal-Organic Frameworks with High H2 Adsorption[J]. Chem Commun,2007,(8):840-842.

[7] Barin G,Krungleviciute V,Gutov O,et al. Defect Creation by Linker Fragmentation in Metal-Organic Frameworks and Its Effects on Gas Uptake Properties[J]. Inorg Chem,2014,53(13):6914-6919.[7] Barin G,Krungleviciute V,Gutov O,et al. Defect Creation by Linker Fragmentation in Metal-Organic Frameworks and Its Effects on Gas Uptake Properties[J]. Inorg Chem,2014,53(13):6914-6919.

[8] Löpez-Maya E,Montoro C,Colombo V,et al. Improved CO2 Capture from Flue Gas by Basic Sites, Charge Gradients, and Missing Linker Defects on Nickel Face Cubic Centered MOFs[J]. Adv Funct Mater,2014,24(39):6130-6135.[8] Löpez-Maya E,Montoro C,Colombo V,et al. Improved CO2 Capture from Flue Gas by Basic Sites, Charge Gradients, and Missing Linker Defects on Nickel Face Cubic Centered MOFs[J]. Adv Funct Mater,2014,24(39):6130-6135.

[9] Trens P,Belarbi H,Shepherd C,et al. Adsorption and Separation of Xylene Isomers Vapors onto the Chromium Terephthalate-based Porous Material MIL-101(Cr):An Experimental and Computational Study[J]. Micropor Mesopor Mater,2014,183(1):17-22.[9] Trens P,Belarbi H,Shepherd C,et al. Adsorption and Separation of Xylene Isomers Vapors onto the Chromium Terephthalate-based Porous Material MIL-101(Cr):An Experimental and Computational Study[J]. Micropor Mesopor Mater,2014,183(1):17-22.

[10] Cirujano F G,Llabr si Xamena F X,Corma A. MOFs as Multifunctional Catalysts:One-pot Synthesis of Menthol From Citronellal over a Bifunctional MIL-101 Catalyst[J]. Dalton Trans,2012,41(14):4249-4254.[10] Cirujano F G,Llabr si Xamena F X,Corma A. MOFs as Multifunctional Catalysts:One-pot Synthesis of Menthol From Citronellal over a Bifunctional MIL-101 Catalyst[J]. Dalton Trans,2012,41(14):4249-4254.

[11] Opelt S,Turk S,Dietzsch E,et al. Preparation of Palladium Supported on MOF-5 and Its Use as Hydrogenation Catalyst[J]. Catal Commun,2008,9(6):1286-1290.[11] Opelt S,Turk S,Dietzsch E,et al. Preparation of Palladium Supported on MOF-5 and Its Use as Hydrogenation Catalyst[J]. Catal Commun,2008,9(6):1286-1290.

[12] Ramos-Fernandez E V,Pieters C,Linden B,et al. Highly Dispersed Platinum in Metal Organic Framework NH2-MIL-101(Al) Containing Phosphotungstic Acid-Characterization and Catalytic Performance[J]. J Catal,2012,289:42-52.[12] Ramos-Fernandez E V,Pieters C,Linden B,et al. Highly Dispersed Platinum in Metal Organic Framework NH2-MIL-101(Al) Containing Phosphotungstic Acid-Characterization and Catalytic Performance[J]. J Catal,2012,289:42-52.

[13] Fazaeli R,Aliyan H,Moghadam M,et al. Nano-rod Catalysts: Building MOF Bottles(MIL-101 Family as Heterogeneous Single-site Catalysts) Around Vanadium Oxide Ships[J]. J Mol Catal A:Chem,2013,374/375:46-52.[13] Fazaeli R,Aliyan H,Moghadam M,et al. Nano-rod Catalysts: Building MOF Bottles(MIL-101 Family as Heterogeneous Single-site Catalysts) Around Vanadium Oxide Ships[J]. J Mol Catal A:Chem,2013,374/375:46-52.

[14] Schejn A,Mazet T,Falk V,et al. Fe3O4@ZIF-8:Magnetically Recoverable Catalystsby Loading Fe3O4 Nanoparticles Inside a Zinc Imidazolate Framework[J]. Dalton Trans,2015,44(22):10136-10140.[14] Schejn A,Mazet T,Falk V,et al. Fe3O4@ZIF-8:Magnetically Recoverable Catalystsby Loading Fe3O4 Nanoparticles Inside a Zinc Imidazolate Framework[J]. Dalton Trans,2015,44(22):10136-10140.

[15] Liu D M,Lu K D,Poon C,et al. Metal-Organic Frameworks as Sensory Materials and Imaging Agents[J]. Inorg Chem,2014,53(4):1916-1924.[15] Liu D M,Lu K D,Poon C,et al. Metal-Organic Frameworks as Sensory Materials and Imaging Agents[J]. Inorg Chem,2014,53(4):1916-1924.

[16] Hermes S,Schroder F,Chelmowski R,et al. Selective Nucleation and Growth of Metal-Organic Open Framework Thin Films on Patterned COOF/CF3-Terminated Self-Assembled Monolayers on Au(111)[J]. J Am Chem Soc,2005,127(40):13744-13745.[16] Hermes S,Schroder F,Chelmowski R,et al. Selective Nucleation and Growth of Metal-Organic Open Framework Thin Films on Patterned COOF/CF3-Terminated Self-Assembled Monolayers on Au(111)[J]. J Am Chem Soc,2005,127(40):13744-13745.

[17] Bux H,Chmelik C,Krishna R,et al. Ethene/ethane Separation by the MOF Membrane ZIF-8:Molecular Correlation of Permeation, Adsorption,Diffusion[J]. J Membr Sci,2011,369(1/2):284-289.[17] Bux H,Chmelik C,Krishna R,et al. Ethene/ethane Separation by the MOF Membrane ZIF-8:Molecular Correlation of Permeation, Adsorption,Diffusion[J]. J Membr Sci,2011,369(1/2):284-289.

[18] Zhang F,Zou X Q,Gao X,et al. Hydrogen Selective NH2-MIL-53(Al) MOF Membranes with High Permeability[J]. Adv Funct Mater,2012,22(17):3583-3590.[18] Zhang F,Zou X Q,Gao X,et al. Hydrogen Selective NH2-MIL-53(Al) MOF Membranes with High Permeability[J]. Adv Funct Mater,2012,22(17):3583-3590.

[19] Kathuria A,Al-Ghamdi S,Abiad M G,et al. The Influence of Cu3(BTC)2 Metal Organic Framework on the Permeability and Perm-selectivity of PLLA-MOF Mixed Matrix Membranes[J]. J Appl Polym S,2015,132(46):42764-42773.[19] Kathuria A,Al-Ghamdi S,Abiad M G,et al. The Influence of Cu3(BTC)2 Metal Organic Framework on the Permeability and Perm-selectivity of PLLA-MOF Mixed Matrix Membranes[J]. J Appl Polym S,2015,132(46):42764-42773.

[20] Shekhah O,Cadiau A,Eddaoudi M. Fabrication and Non-covalent Modification of Highly Oriented Thin Films of a Zeolite-like Metal-Organic Framework(ZMOF) with Rho Topology[J]. Cryst Eng Comm,2015,17(2):290-294.[20] Shekhah O,Cadiau A,Eddaoudi M. Fabrication and Non-covalent Modification of Highly Oriented Thin Films of a Zeolite-like Metal-Organic Framework(ZMOF) with Rho Topology[J]. Cryst Eng Comm,2015,17(2):290-294.

[21] Cavka J H,Jakobsen S,Olsbye U,et al. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with ExceptionalStability[J]. J Am Chem Soc,2008,130(42):13850-13851.[21] Cavka J H,Jakobsen S,Olsbye U,et al. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with ExceptionalStability[J]. J Am Chem Soc,2008,130(42):13850-13851.

[22] Piscopo G,Polyzoidis A,Schwarzer M,et al. Stability of UiO-66 Under Acidic Treatment: Opportunities and Limitations for Post-synthetic Modifications[J]. Micropor Mesopor Mater,2015,208:30-35.[22] Piscopo G,Polyzoidis A,Schwarzer M,et al. Stability of UiO-66 Under Acidic Treatment: Opportunities and Limitations for Post-synthetic Modifications[J]. Micropor Mesopor Mater,2015,208:30-35.

[23] Ramsahye N A,Gao J,Jobic H,et al. Adsorption and Diffusion of Light Hydrocatbons in UiO-66(Zr):A Combination of Experimental and Modeling Tools[J]. J Phys Chem C,2014,118(47):27470-27482.[23] Ramsahye N A,Gao J,Jobic H,et al. Adsorption and Diffusion of Light Hydrocatbons in UiO-66(Zr):A Combination of Experimental and Modeling Tools[J]. J Phys Chem C,2014,118(47):27470-27482.

[24] Valenzano L,Civalleri B,Chavan S,et al. Disclosing the Complex Structure of UiO-66 Metal Organic Framework:A Synergic Combination of Experiment and Theory[J]. Chem Mater,2011,23(7):1700-1718.[24] Valenzano L,Civalleri B,Chavan S,et al. Disclosing the Complex Structure of UiO-66 Metal Organic Framework:A Synergic Combination of Experiment and Theory[J]. Chem Mater,2011,23(7):1700-1718.

[25] Schaate A,Roy P,Godt A,et al. Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals[J]. Chem Eur J,2011,17(24):6643-6651.[25] Schaate A,Roy P,Godt A,et al. Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals[J]. Chem Eur J,2011,17(24):6643-6651.

[26] Ren J W,Langmi H W,North B C,et al. Modulated Synthesis of Zirconium-Metal Organic Framework(Zr-MOF) for Hydrogen Storage Applications[J]. Int J Hydrogen Energy,2014,39(2):890-895.[26] Ren J W,Langmi H W,North B C,et al. Modulated Synthesis of Zirconium-Metal Organic Framework(Zr-MOF) for Hydrogen Storage Applications[J]. Int J Hydrogen Energy,2014,39(2):890-895.

[27] ien S,Wragg D,Reinsch H,et al. Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal-Organic Frameworks[J]. Cryst Growth Des,2014,14(11):5370-5372.[27] ien S,Wragg D,Reinsch H,et al. Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal-Organic Frameworks[J]. Cryst Growth Des,2014,14(11):5370-5372.

[28] Tsuruoka T,Furukawa S,Takashima Y,et al. Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth[J]. Angew Chem Int Ed,2009,48(26):4739-4743.[28] Tsuruoka T,Furukawa S,Takashima Y,et al. Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth[J]. Angew Chem Int Ed,2009,48(26):4739-4743.

[29] Diring S,Furukawa S,Takashima Y,et al. Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes[J]. Chem Mater,2010,22(16):4531-4538.[29] Diring S,Furukawa S,Takashima Y,et al. Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes[J]. Chem Mater,2010,22(16):4531-4538.

[30] Han Y T,Liu M,Li K Y,et al. Facile Synthesis of Morphology- and Size-controlled Zirconium Metal-Organic Framework UiO-66:The Role of Hydrofluoric Acid in Crystallization[J]. Cryst Eng Comm,2015,17(33):6434-6440.[30] Han Y T,Liu M,Li K Y,et al. Facile Synthesis of Morphology- and Size-controlled Zirconium Metal-Organic Framework UiO-66:The Role of Hydrofluoric Acid in Crystallization[J]. Cryst Eng Comm,2015,17(33):6434-6440.

[31] Wu H,Chua Y S,Krungleviciute V,et al. Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal-Organic Framework UiO-66 and Their Important Effects on Gas Adsorption[J]. J Am Chem Soc,2013,135(28):10525-10532.[31] Wu H,Chua Y S,Krungleviciute V,et al. Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal-Organic Framework UiO-66 and Their Important Effects on Gas Adsorption[J]. J Am Chem Soc,2013,135(28):10525-10532.

[32] Vermoortele F,Bueken B,Bars G L,et al. Synthesis Modulation as a Tool to Increase the Catalytic Activity of Metal-Organic Frameworks:The Unique Case of UiO-66(Zr)[J]. J Am Chem Soc,2013,135(31):11465-11468.[32] Vermoortele F,Bueken B,Bars G L,et al. Synthesis Modulation as a Tool to Increase the Catalytic Activity of Metal-Organic Frameworks:The Unique Case of UiO-66(Zr)[J]. J Am Chem Soc,2013,135(31):11465-11468.

[33] Shearer G C,Chavan S,Ethiraj J,et al. Tuned to Perfection:Ironing Out the Defects in Metal-Organic Framework UiO-66[J]. Chem Mater,2014,26(14):4068-4071.[33] Shearer G C,Chavan S,Ethiraj J,et al. Tuned to Perfection:Ironing Out the Defects in Metal-Organic Framework UiO-66[J]. Chem Mater,2014,26(14):4068-4071.

[34] Abid H R,Ang H M,Wang Shaobin. Effects of Ammonium Hydroxide on the Structure and Gas Adsorption of Nanosized Zr-MOFs(UiO-66)[J]. Nanoscale,2012,4(10):3089-3094.[34] Abid H R,Ang H M,Wang Shaobin. Effects of Ammonium Hydroxide on the Structure and Gas Adsorption of Nanosized Zr-MOFs(UiO-66)[J]. Nanoscale,2012,4(10):3089-3094.

[35] Wiersum A D,Soubeyrand-Lenoir E,Yang Qingyuan,et al. An Evaluation of UiO-66 for Gas-based Application[J]. Chem Asian J,2011,6(12):3270-3280.[35] Wiersum A D,Soubeyrand-Lenoir E,Yang Qingyuan,et al. An Evaluation of UiO-66 for Gas-based Application[J]. Chem Asian J,2011,6(12):3270-3280.

[36] Katz M J,Brown Z J,Colon Y J,et al. A Facile Synthesis of UiO-66,UiO-67 and Their Derivatives[J]. Chem Commun,2013,49(82):9449-9451.[36] Katz M J,Brown Z J,Colon Y J,et al. A Facile Synthesis of UiO-66,UiO-67 and Their Derivatives[J]. Chem Commun,2013,49(82):9449-9451.

[37] Ragon F,Horcajada P,Chevreau H,et al. In Situ Energy-Dispersive X-ray Diffraction for the Synthesis Optimization and Scale-up of the Porous Zirconium Terephthalate UiO-66[J]. Inorg Chem,2014,53(5):2491-2500.[37] Ragon F,Horcajada P,Chevreau H,et al. In Situ Energy-Dispersive X-ray Diffraction for the Synthesis Optimization and Scale-up of the Porous Zirconium Terephthalate UiO-66[J]. Inorg Chem,2014,53(5):2491-2500.

[38] Kandiah M,Nilsen M H,Usseglio S,et al. Synthesis and Stability of Tagged UiO-66 Zr-MOFs[J]. Chem Mater,2010,22(24):6632-6640.[38] Kandiah M,Nilsen M H,Usseglio S,et al. Synthesis and Stability of Tagged UiO-66 Zr-MOFs[J]. Chem Mater,2010,22(24):6632-6640.

[39] Garibay S J,Cohen S M. Isoreticular Synthesis and Modification of Frameworks with the UiO-66 Topology[J]. Chem Commun,2010,46(41):7700-7702.[39] Garibay S J,Cohen S M. Isoreticular Synthesis and Modification of Frameworks with the UiO-66 Topology[J]. Chem Commun,2010,46(41):7700-7702.

[40] Biswas S,Zhang J,Li Z B,et al. Enhanced Selectivity of CO2 over CH4 in Sulphonate-, Carboxylate- and Iodo-functionalized UiO-66 Frameworks[J]. Dalton Trans,2013,42(13):4730-4737.[40] Biswas S,Zhang J,Li Z B,et al. Enhanced Selectivity of CO2 over CH4 in Sulphonate-, Carboxylate- and Iodo-functionalized UiO-66 Frameworks[J]. Dalton Trans,2013,42(13):4730-4737.

[41] Huang Y T,Qin W P,Li Z,et al. Enhanced Stability and CO2 Affinity of a UiO-66 Type Metal-Organic Framework Decorated with Dimethyl Groups[J]. Dalton Trans,2012,41(31):9283-9285.[41] Huang Y T,Qin W P,Li Z,et al. Enhanced Stability and CO2 Affinity of a UiO-66 Type Metal-Organic Framework Decorated with Dimethyl Groups[J]. Dalton Trans,2012,41(31):9283-9285.

[42] Shen L J,Liang R W,Luo M B,et al. Electronic Effects of Ligand Substitution on Metal-Organic Framework Photocatalysts:The Case Study of UiO-66[J]. Phys Chem Chem Phys,2015,17(1):117-121.[42] Shen L J,Liang R W,Luo M B,et al. Electronic Effects of Ligand Substitution on Metal-Organic Framework Photocatalysts:The Case Study of UiO-66[J]. Phys Chem Chem Phys,2015,17(1):117-121.

[43] Cmarik G E,Kim M,Cohen S M,et al. Tuning the Adsorption Properties of UiO-66 via Ligand Functionalization[J]. Langmuir,2012,28(44):15606-15613.[43] Cmarik G E,Kim M,Cohen S M,et al. Tuning the Adsorption Properties of UiO-66 via Ligand Functionalization[J]. Langmuir,2012,28(44):15606-15613.

[44] Fei H H,Shin J W,Meng Y S,et al. Reusable Oxidation Catalysis Using Metal-monocatecholato Speciesin a Robust Metal-Organic Framework[J]. J Am Chem Soc,2014,136(13):4965-4973.[44] Fei H H,Shin J W,Meng Y S,et al. Reusable Oxidation Catalysis Using Metal-monocatecholato Speciesin a Robust Metal-Organic Framework[J]. J Am Chem Soc,2014,136(13):4965-4973.

[45] Fei H H,Cohen S M. Metalation of a Thiocatechol-Functionalized Zr(Ⅳ)-Based Metal-Organic Framework for Selective C—H Functionalization[J]. J Am Chem Soc,2015,137(6):2191-2194.[45] Fei H H,Cohen S M. Metalation of a Thiocatechol-Functionalized Zr(Ⅳ)-Based Metal-Organic Framework for Selective C—H Functionalization[J]. J Am Chem Soc,2015,137(6):2191-2194.

[46] Shearer G C,Forselv S,Chavan S,et al. In Situ Infrared Spectroscopic and Gravimetric Characterisation of the Solvent Removal and Dehydroxylation of the Metal Organic Frameworks UiO-66 and UiO-67[J]. Top Catal,2013,56(9/10):770-782.[46] Shearer G C,Forselv S,Chavan S,et al. In Situ Infrared Spectroscopic and Gravimetric Characterisation of the Solvent Removal and Dehydroxylation of the Metal Organic Frameworks UiO-66 and UiO-67[J]. Top Catal,2013,56(9/10):770-782.

[47] Lau C H,Babarao R,Hill M R. A Route to Drastic Increase of CO2 Uptake in Zr Metal Organic Framework UiO-66[J]. Chem Commun,2013,49(35):3634-3636.[47] Lau C H,Babarao R,Hill M R. A Route to Drastic Increase of CO2 Uptake in Zr Metal Organic Framework UiO-66[J]. Chem Commun,2013,49(35):3634-3636.

[48] Yuan Q Y,Iersum A D,Llewellyn P L,et al. Functionalizing Porous Zirconium Terephthalate UiO-66(Zr) for Natural Gas Upgrading:A Computational Exploration[J]. Chem Commun,2011,47(34):9603-9605.[48] Yuan Q Y,Iersum A D,Llewellyn P L,et al. Functionalizing Porous Zirconium Terephthalate UiO-66(Zr) for Natural Gas Upgrading:A Computational Exploration[J]. Chem Commun,2011,47(34):9603-9605.

[50] Ebrahim A M,Bandosz T J. Ce(Ⅲ) Doped Zr-Based MOFs as Excellent NO2 Adsorbents at Ambient Conditions[J]. Appl Mater Interfaces,2013,5(21):10565-10573.[50] Ebrahim A M,Bandosz T J. Ce(Ⅲ) Doped Zr-Based MOFs as Excellent NO2 Adsorbents at Ambient Conditions[J]. Appl Mater Interfaces,2013,5(21):10565-10573.

[51] Moreira M A,Santos J C,Ferreira A F P,et al. Reverse Shape Selectivity in the Liquid-Phase Adsorption of Xylene Isomers in Zirconium Terephthalate MOF UiO-66[J]. Langmuir,2012,28(13):5715-5723.[51] Moreira M A,Santos J C,Ferreira A F P,et al. Reverse Shape Selectivity in the Liquid-Phase Adsorption of Xylene Isomers in Zirconium Terephthalate MOF UiO-66[J]. Langmuir,2012,28(13):5715-5723.

[52] Vermoortele F,Ameloot R,VimontA,et al. An Amino-modified Zr-terephthalate Metal-Organic Framework as an Acid-base Catalyst for Cross-aldol Condensation[J]. Chem Commun,2011,47(5):1521-1523.[52] Vermoortele F,Ameloot R,VimontA,et al. An Amino-modified Zr-terephthalate Metal-Organic Framework as an Acid-base Catalyst for Cross-aldol Condensation[J]. Chem Commun,2011,47(5):1521-1523.

[53] Chung Y M,Kim H Y,Ahn W S. Friedel-Crafts Acylation of p-Xylene over Sulfonated Zirconium Terephthalates[J]. Catal Lett,2014,144(5):817-824.[53] Chung Y M,Kim H Y,Ahn W S. Friedel-Crafts Acylation of p-Xylene over Sulfonated Zirconium Terephthalates[J]. Catal Lett,2014,144(5):817-824.

[54] Silva C G,Luz I,Llabrés i Xamena F X,et al. Water Stable Zr-Benzene Dicarboxylate Metal-Organic Frameworks as Photocatalysts for Hydrogen Generation[J]. Chem Eur J,2010,16(36):11133-11138.[54] Silva C G,Luz I,Llabrés i Xamena F X,et al. Water Stable Zr-Benzene Dicarboxylate Metal-Organic Frameworks as Photocatalysts for Hydrogen Generation[J]. Chem Eur J,2010,16(36):11133-11138.

[55] He J,Wang J Q,Chen Y J,et al. A Dye-sensitized Pt@UiO-66(Zr) Metal-Organic Framework for Visible-light Photocatalytic Hydrogen Production[J]. Chem Commun,2014,50(53):7063-7066.[55] He J,Wang J Q,Chen Y J,et al. A Dye-sensitized Pt@UiO-66(Zr) Metal-Organic Framework for Visible-light Photocatalytic Hydrogen Production[J]. Chem Commun,2014,50(53):7063-7066.

[56] Yuan Y P,Yin L S,Cao S W,et al. Improving Photocatalytic Hydrogen Productionof Metal-organic Framework UiO-66 Octahedrons by Dye-Sensitization[J]. Appl Catal B,2015,168/169:572-576.[56] Yuan Y P,Yin L S,Cao S W,et al. Improving Photocatalytic Hydrogen Productionof Metal-organic Framework UiO-66 Octahedrons by Dye-Sensitization[J]. Appl Catal B,2015,168/169:572-576.

[57] Sha Z,Sun J L,Sze On Chan H,et al. Bismuth Tungstate Incorporated Zirconium Metal-Organic Framework Composite with Enhanced Visible-light Photocatalytic Performance[J]. RSC Adv,2014,4(110):64977-64984.[57] Sha Z,Sun J L,Sze On Chan H,et al. Bismuth Tungstate Incorporated Zirconium Metal-Organic Framework Composite with Enhanced Visible-light Photocatalytic Performance[J]. RSC Adv,2014,4(110):64977-64984.

[58] Sha Z,Wu J S. Enchanted Visible-Light Photocatalytic Performance of BiOBr/UiO-66 Composite for Dye Degradation with the Assistant of UiO-66[J]. RSC Adv,2015,5(49):39592-39600.[58] Sha Z,Wu J S. Enchanted Visible-Light Photocatalytic Performance of BiOBr/UiO-66 Composite for Dye Degradation with the Assistant of UiO-66[J]. RSC Adv,2015,5(49):39592-39600.

[59] Na K,Choi K M,Yaghi O M,et al. Metal Nanocrystals Embedded in Single Nanocrystals of MOFs Give Unusual Selectivity as Heterogeneous Catalysts[J]. Nano Lett,2014,14(10):5979-5983.[59] Na K,Choi K M,Yaghi O M,et al. Metal Nanocrystals Embedded in Single Nanocrystals of MOFs Give Unusual Selectivity as Heterogeneous Catalysts[J]. Nano Lett,2014,14(10):5979-5983.

[60] Choi K M,Na K,Somoriai G A,et al. Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal-Organic Frameworks[J]. J Am Chem Soc,2015,137(24):7810-7816.[60] Choi K M,Na K,Somoriai G A,et al. Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal-Organic Frameworks[J]. J Am Chem Soc,2015,137(24):7810-7816.

[61] Shahat A,Hassana H M A,Azzazy H M E. Optical Metal-Organic Framework Sensor for Selective Discrimination of Some Toxic Metal Ions in Water[J]. Anal Chim Acta,2013,793(2):90-98.[61] Shahat A,Hassana H M A,Azzazy H M E. Optical Metal-Organic Framework Sensor for Selective Discrimination of Some Toxic Metal Ions in Water[J]. Anal Chim Acta,2013,793(2):90-98.

[62] Xu X Y,Yan B. Eu(Ⅲ) Functionalized Zr-based Metal-Organic Framework as Excellent Fluorescent Probe for Cd2+ Detection in Aqueous Environment[J]. Sens Actuators B,2016,222:347-353.[62] Xu X Y,Yan B. Eu(Ⅲ) Functionalized Zr-based Metal-Organic Framework as Excellent Fluorescent Probe for Cd2+ Detection in Aqueous Environment[J]. Sens Actuators B,2016,222:347-353.

[63] Liu X L,Demir N K,Wu Z T,et al. Highly Water-Stable Zirconium Metal-Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination[J]. J Am Chem Soc,2015,137(22):6999-7002.[63] Liu X L,Demir N K,Wu Z T,et al. Highly Water-Stable Zirconium Metal-Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination[J]. J Am Chem Soc,2015,137(22):6999-7002.

[64] Fei H H,Pullen S,Wagner A,et al. Functionalization of Robust Zr(Ⅳ)-based Metal-Organic Framework Films via a Postsynthetic Ligand Exchange[J]. Chem Commun,2015,51(1):66-69.[64] Fei H H,Pullen S,Wagner A,et al. Functionalization of Robust Zr(Ⅳ)-based Metal-Organic Framework Films via a Postsynthetic Ligand Exchange[J]. Chem Commun,2015,51(1):66-69.

[65] Chang N,Yan X P. Exploring Reverse Shape Selectivity and Molecular Sieving Effect of Metal-Organic Framework UiO-66 Coated Capillary Column for Gas Chromatographic Separation[J]. J Chromatogr A,2012,1257:116-124.[65] Chang N,Yan X P. Exploring Reverse Shape Selectivity and Molecular Sieving Effect of Metal-Organic Framework UiO-66 Coated Capillary Column for Gas Chromatographic Separation[J]. J Chromatogr A,2012,1257:116-124.

[66] Zhao WW,Zhang C Y,Yan Z G,et al. Separations of Substituted Benzenes and Polycyclic Aromatichydrocarbons Using Normal- and Reverse-phase High Performance Liquid Chromatography with UiO-66 as the Stationary Phase[J]. J Chromatogr A,2014,1370:121-128.[66] Zhao WW,Zhang C Y,Yan Z G,et al. Separations of Substituted Benzenes and Polycyclic Aromatichydrocarbons Using Normal- and Reverse-phase High Performance Liquid Chromatography with UiO-66 as the Stationary Phase[J]. J Chromatogr A,2014,1370:121-128.

[67] de Krafft K E,Boyle W S,Burk L M,et al. Zr- and Hf-based Nanoscale Metal-Organic Frameworks as Contrast Agents for Computed Tomography[J]. J Mater Chem,2012,22(35):18139-18141.[67] de Krafft K E,Boyle W S,Burk L M,et al. Zr- and Hf-based Nanoscale Metal-Organic Frameworks as Contrast Agents for Computed Tomography[J]. J Mater Chem,2012,22(35):18139-18141.



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3