Winkler/Pasternak/Kerr地基上多孔FG板基于四变量板理论的自由振动分析

您所在的位置:网站首页 trobleshooting材料 Winkler/Pasternak/Kerr地基上多孔FG板基于四变量板理论的自由振动分析

Winkler/Pasternak/Kerr地基上多孔FG板基于四变量板理论的自由振动分析

#Winkler/Pasternak/Kerr地基上多孔FG板基于四变量板理论的自由振动分析| 来源: 网络整理| 查看: 265

参考文献

[1] Zhao, J., Wang, Q., Deng, X., et al. (2019) Free Vibrations of Functionally Graded Porous Rectangular Plate with Uni-form Elastic Boundary Conditions. Composites Part B: Engineering, 168, 106-120. https://doi.org/10.1016/j.compositesb.2018.12.044 [2] Nguyen, V.-H., Nguyen, T.-K., Thai, H.-T., et al. (2014) A New Inverse Trigonometric Shear Deformation Theory for Isotropic and Functionally Graded Sandwich Plates. Compo-sites Part B: Engineering, 66, 233-246. https://doi.org/10.1016/j.compositesb.2014.05.012 [3] Mechab, I., Mechab, B. and Benaissa, S. (2013) Static and Dynamic Analysis of Functionally Graded Plates Using Four-Variable Refined Plate Theory by the New Function. Composites Part B: Engineering, 45, 748-757. https://doi.org/10.1016/j.compositesb.2012.07.015 [4] Thai, H.-T. and Vo, T.P. (2013) A New Sinusoidal Shear Deformation Theory for Bending, Buckling, and Vibration of Functionally Graded Plates. Applied Mathematical Model-ling, 37, 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008 [5] Thai, H.-T. and Kim, S.-E. (2013) A Simple Higher-Order Shear Deformation Theory for Bending and Free Vibration Analysis of Functionally Graded Plates. Composite Structures, 96, 165-173. https://doi.org/10.1016/j.compstruct.2012.08.025 [6] Mantari, J.L., Granados, E.V. and Guedes Soares, C. (2014) Vibrational Analysis of Advanced Composite Plates Resting on Elastic Foundation. Composites Part B: Engineering, 66, 407-419. https://doi.org/10.1016/j.compositesb.2014.05.026 [7] Mantari, J.L., Granados, E.V., Hinostroza, M.A., et al. (2014) Modelling Advanced Composite Plates Resting on Elastic Foundation by Using a Quasi-3D Hybrid Type HSDT. Composite Structures, 118, 455-471. https://doi.org/10.1016/j.compstruct.2014.07.039 [8] Malekzadeh, P. (2009) Three-Dimensional Free Vibration Analysis of Thick Functionally Graded Plates on Elastic Foundations. Composite Structures, 89, 367-373. https://doi.org/10.1016/j.compstruct.2008.08.007 [9] Li, Q., Wu, D., Chen, X., et al. (2018) Nonlinear Vibration and Dynamic Buckling Analyses of Sandwich Functionally Graded Porous Plate with Graphene Platelet Reinforcement Resting on Winkler-Pasternak Elastic Foundation. International Journal of Mechanical Sciences, 148, 596-610. https://doi.org/10.1016/j.ijmecsci.2018.09.020 [10] Hasani Baferani, A., Saidi, A.R. and Ehteshami, H. (2011) Accurate Solution for Free Vibration Analysis of Functionally Graded Thick Rectangular Plates Resting on Elastic Foundation. Composite Structures, 93, 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020 [11] Yang, J., Wu, H. and Kitipornchai, S. (2017) Buckling and Postbuckling of Functionally Graded Multilayer Graphene Platelet-Reinforced Composite Beams. Composite Structures, 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048 [12] Duc, N.D., Lee, J., Nguyen-Thoi, T., et al. (2017) Static Response and Free Vibration of Functionally Graded Carbon Nanotube-Reinforced Composite Rectangular Plates Rest-ing on Winkler-Pasternak Elastic Foundations. Aerospace Science and Technology, 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032 [13] Sheikholeslami, S.A. and Saidi, A.R. (2013) Vibration Analysis of Functionally Graded Rectangular Plates Resting on Elastic Foundation Using Higher-Order Shear and Normal Deforma-ble Plate Theory. Composite Structures, 106, 350-361. https://doi.org/10.1016/j.compstruct.2013.06.016 [14] Thai, H.-T. and Choi, D.-H. (2011) A Refined Plate Theory for Functionally Graded Plates Resting on Elastic Foundation. Composites Science and Technology, 71, 1850-1858. https://doi.org/10.1016/j.compscitech.2011.08.016 [15] Mahmoudi, A., Benyoucef, S., Tounsi, A., et al. (2017) A Refined Quasi-3D Shear Deformation Theory for Thermo-Mechanical Behavior of Functionally Graded Sandwich Plates on Elastic Foundations. Journal of Sandwich Structures & Materials, 21, 1906-1929. https://doi.org/10.1177/1099636217727577 [16] Demirhan, P.A. and Taskin, V. (2019) Bending and Free Vibra-tion Analysis of Levy-Type Porous Functionally Graded Plate Using State Space Approach. Composites Part B: Engi-neering, 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020 [17] Lü, C.F., Lim, C.W. and Chen, W.Q. (2009) Exact Solu-tions for Free Vibrations of Functionally Graded Thick Plates on Elastic Foundations. Mechanics of Advanced Materials and Structures, 16, 576-584. https://doi.org/10.1080/15376490903138888 [18] Li, M., Guedes Soares, C. and Yan, R. (2021) Free Vibration Analysis of FGM Plates on Winkler/Pasternak/Kerr Foundation by Using a Simple Quasi-3D HSDT. Composite Struc-tures, 264, Article ID: 113643. https://doi.org/10.1016/j.compstruct.2021.113643 [19] Phuong, N.T., Dong, D.T., Van Doan, C., et al. (2022) Nonlinear Buckling of Higher-Order Shear Deformable Stiffened FG-GRC Laminated Plates with Nonlinear Elastic Foundation Subjected to Combined Loads. Aerospace Science and Technology, 127, Article ID: 107736. https://doi.org/10.1016/j.ast.2022.107736 [20] Wang, M., Xu, Y.-G., Qiao, P., et al. (2022) Buckling and Free Vi-bration Analysis of Shear Deformable Graphene-Reinforced Composite Laminated Plates. Composite Structures, 280, Article ID: 114854. https://doi.org/10.1016/j.compstruct.2021.114854 [21] Zenkour, A.M. and Alghanmi, R.A. (2022) A Refined Quasi-3D Theory for the Bending of Functionally Graded Porous Sandwich Plates Resting on Elastic Foundations. Thin-Walled Structures, 181, Article ID: 110047. https://doi.org/10.1016/j.tws.2022.110047 [22] Hadji, L., Avcar, M. and Zouatnia, N. (2022) Natural Frequency Analysis of Imperfect FG Sandwich Plates Resting on Winkler-Pasternak Foundation. Materials Today: Proceedings, 53, 153-160. https://doi.org/10.1016/j.matpr.2021.12.485 [23] Shahsavari, D., Shahsavari, M., Li, L., et al. (2018) A Novel Quasi-3D Hyperbolic Theory for Free Vibration of FG Plates with Porosities Resting on Winkler/Pasternak/Kerr Foun-dation. Aerospace Science and Technology, 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004 [24] Jin, G., Su, Z., Shi, S., et al. (2014) Three-Dimensional Exact Solution for the Free Vibration of Arbitrarily Thick Functionally Graded Rectangular Plates with General Boundary Conditions. Composite Structures, 108, 565-577. https://doi.org/10.1016/j.compstruct.2013.09.051 [25] Mantari, J.L. (2015) A Refined Theory with Stretching Ef-fect for the Dynamics Analysis of Advanced Composites on Elastic Foundation. Mechanics of Materials, 86, 31-43. https://doi.org/10.1016/j.mechmat.2015.02.010 [26] Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019) New 2D and Quasi-3D Shear Deformation Theories for Free Vibration of Functionally Graded Plates on Elastic Foundations. Compo-sites Part B: Engineering, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3