【精选】STM32

您所在的位置:网站首页 stm32f0系列adc 【精选】STM32

【精选】STM32

2023-10-31 02:33| 来源: 网络整理| 查看: 265

目录

 

STM32 ADC 简介

寄存器

配置步骤

函数代码

  STM32 ADC 简介

STM32 拥有 1~3 个 ADC(STM32F101/102 系列只有 1 个 ADC),这些 ADC 可以独立使用, 也可以使用双重模式(提高采样率)。STM32 的 ADC 是 12 位逐次逼近型的模拟数字转换器。 它有 18 个通道,可测量 16 个外部和 2 个内部信号源。各通道的 A/D 转换可以单次、连续、扫 描或间断模式执行。ADC 的结果可以左对齐或右对齐方式存储在 16 位数据寄存器中。 模拟看 门狗特性允许应用程序检测输入电压是否超出用户定义的高/低阀值。 STM32F103 系列最少都拥有 2 个 ADC,我们选择的 STM32F103RCT 包含有 3 个 ADC。STM32 的 ADC 最大的转换速率为 1Mhz,也就是转换时间为 1us(在 ADCCLK=14M,采样周期 为 1.5 个 ADC 时钟下得到),不要让 ADC 的时钟超过 14M,否则将导致结果准确度下降。 STM32 将 ADC 的转换分为 2 个通道组:规则通道组和注入通道组。规则通道相当于你正 常运行的程序,而注入通道呢,就相当于中断。在你程序正常执行的时候,中断是可以打断你 的执行的。同这个类似,注入通道的转换可以打断规则通道的转换, 在注入通道被转换完成之 后,规则通道才得以继续转换。 通过一个形象的例子可以说明:假如你在家里的院子内放了 5 个温度探头,室内放了 3 个 温度探头;你需要时刻监视室外温度即可,但偶尔你想看看室内的温度;因此你可以使用规则 通道组循环扫描室外的 5 个探头并显示 AD 转换结果,当你想看室内温度时,通过一个按钮启 动注入转换组(3 个室内探头)并暂时显示室内温度,当你放开这个按钮后,系统又会回到规则通 道组继续检测室外温度。从系统设计上,测量并显示室内温度的过程中断了测量并显示室外温 度的过程,但程序设计上可以在初始化阶段分别设置好不同的转换组,系统运行中不必再变更 循环转换的配置,从而达到两个任务互不干扰和快速切换的结果。可以设想一下,如果没有规 则组和注入组的划分,当你按下按钮后,需要从新配置 AD 循环扫描的通道,然后在释放按钮 后需再次配置 AD 循环扫描的通道。 上面的例子因为速度较慢,不能完全体现这样区分(规则通道组和注入通道组)的好处,但 在工业应用领域中有很多检测和监视探头需要较快地处理,这样对 AD 转换的分组将简化事件 处理的程序并提高事件处理的速度。 STM32 其 ADC 的规则通道组最多包含 16 个转换,而注入通道组最多包含 4 个通道。 STM32 的 ADC 可以进行很多种不同的转换模式,这里仅介绍如何使用规则通道的单次转 换模式。 STM32 的 ADC 在单次转换模式下,只执行一次转换,该模式可以通过 ADC_CR2 寄存器 的 ADON 位(只适用于规则通道)启动,也可以通过外部触发启动(适用于规则通道和注入通 道),这是 CONT 位为 0。 以规则通道为例,一旦所选择的通道转换完成,转换结果将被存在 ADC_DR 寄存器中, EOC(转换结束)标志将被置位,如果设置了 EOCIE,则会产生中断。然后 ADC 将停止,直 到下次启动。

寄存器

执行规则通道的单次转换,需要用到的 ADC 寄存器。

 ADC 控制寄存器(ADC_CR1 和 ADC_CR2)

 ADC_CR1 的 SCAN 位,该位用于设置扫描模式,由软件设置和清除,如果设置为 1,则 使用扫描模式,如果为 0,则关闭扫描模式。在扫描模式下,由 ADC_SQRx 或 ADC_JSQRx 寄 存器选中的通道被转换。如果设置了 EOCIE 或 JEOCIE,只在最后一个通道转换完毕后才会产 生 EOC 或 JEOC 中断。

ADC_CR1[19:16]用于设置 ADC 的操作模式我们要使用的是独立模式,所以设置这几位为 0 就可以了

接着介绍 ADC_CR2

 ADON 位用于开关 AD 转换器。而 CONT 位用于 设置是否进行连续转换,我们使用单次转换,所以 CONT 位必须为 0。CAL 和 RSTCAL 用于 AD 校准。ALIGN 用于设置数据对齐,我们使用右对齐,该位设置为 0。EXTSEL[2:0]用于选择启动规则转换组转换的外部事件

 这里使用的是软件触发(SWSTART),所以设置这 3 个位为 111。ADC_CR2 的SWSTART 位用于开始规则通道的转换,我们每次转换(单次转换模式下)都需要向该位写 1。

 ADC 采样事件寄存器(ADC_SMPR1 和 ADC_SMPR2),

这两个寄存器用于设置通道 0~17 的采样时间,每个通道占用 3 个位

 采样时间建议尽量长一点,以获得较高的准确度,但是这样会降低 ADC 的转换速率。ADC 的转换时间可以由以下公式计算: Tcovn=采样时间+12.5 个周期 Tcovn 为总转换时间,采样时间是根据每个通道的 SMP 位的设置来决定的。例如, 当 ADCCLK=14Mhz 的时候,并设置 1.5 个周期的采样时间,则得到:Tcovn=1.5+12.5=14 个周 期=1us。

 ADC 规则序列寄存器(ADC_SQR1~3)

该寄存器总共有 3 个这里我们仅介绍一下 ADC_SQR1

L[3:0]用于存储规则序列的长度,我们这里只用了 1 个,所以设置这几个位的值为 0。其 他的 SQ13~16 则存储了规则序列中第 13~16 通道的编号(编号范围:0~17)

我们选择的是单次转换,所以只有一个通道在规则序列里面,这个序列就是 SQ1,通过 ADC_SQR3 的最低 5位(也就是 SQ1)设置。

 ADC 规则数据寄存器(ADC_DR)

规则序列中的 AD 转化结果都将被存在这个寄存器里面,而注入通道的转换结果被保存在 ADC_JDRx 里面。

 图 20.1.8 ADC_ JDRx 寄存器各位描述

该寄存器的数据可以通过 ADC_CR2 的 ALIGN 位设置左对齐还是右对齐。在读取数据的时候要注意。

 ADC 状态寄存器(ADC_SR)

该寄存器保存了 ADC 转换时的各种状态

  EOC 位,我们通过判断该位来决定是否此次规则通道的 AD 转换已经完成,如果完成我们就从 ADC_DR 中读取转换结果,否则等待转换完成。

配置步骤

1) )启 开启 PA 口 口和 和 ADC1 时钟,设置 PA1 为模拟输入

STM32F103RCT6 的 ADC 通道 1 在 PA1 上,所以,我们先要使能 PORTA 的时钟,然后设 置 PA1 为模拟输入。使能 GPIOA 和 ADC 时钟用 RCC_APB2PeriphClockCmd 函数,设置 PA1 的输入方式,使用 GPIO_Init 函数即可

 STM32 的 ADC 通道与 GPIO 对应表

 2 )复位 ADC1 ,同时设置 ADC1 分频因子。 分频因子要确保 ADC1 的时钟(ADCCLK)不要超过 14Mhz。 这个我们设置分频因子位 6,时钟为 72/6=12MHz,库函数的实现方法是: RCC_ADCCLKConfig(RCC_PCLK2_Div6); ADC 时钟复位 ADC_DeInit(ADC1);

3 )初始化 ADC1 参数,设置 ADC1 的工作模式以及规则序列的相关信息

void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct);

typedef struct { uint32_t ADC_Mode; FunctionalState ADC_ScanConvMode; FunctionalState ADC_ContinuousConvMode; uint32_t ADC_ExternalTrigConv; uint32_t ADC_DataAlign; uint8_t ADC_NbrOfChannel; }ADC_InitTypeDef;

 初始化范例

ADC_InitTypeDef ADC_InitStructure; ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC 工作模式:独立模式 ADC_InitStructure.ADC_ScanConvMode = DISABLE; //AD 单通道模式 ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //AD 单次转换模式 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //转换由软件而不是外部触发启动 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC 数据右对齐 ADC_InitStructure.ADC_NbrOfChannel = 1; //顺序进行规则转换的 ADC 通道的数目 1 ADC_Init(ADC1, &ADC_InitStructure); //根据指定的参数初始化外设 ADCx

5 )使能 ADC 并校准

ADC_Cmd(ADC1, ENABLE); //使能指定的 ADC1

执行复位校准的方法是: ADC_ResetCalibration(ADC1); 执行 ADC 校准的方法是: ADC_StartCalibration(ADC1); //开始指定 ADC1 的校准状态

while(ADC_GetResetCalibrationStatus(ADC1)); //等待复位校准结束 while(ADC_GetCalibrationStatus(ADC1)); //等待校 AD 准结束

6 )读取 ADC 值。

设置规则序列通道以及采样周期的函数是

void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime);

 ADC_SoftwareStartConvCmd(ADC1, ENABLE);//使能指定的 ADC1 的软件转换启动功能 开启转换之后,就可以获取转换 ADC 转换结果数据 ADC_GetConversionValue(ADC1);

获取 AD 转换的状态信息的函数是: FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint8_t ADC_FLAG) 比如我们要判断 ADC1d 的转换是否结束,方法是: while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束

函数代码

初始化ADC

//初始化 ADC //这里我们仅以规则通道为例 //我们默认将开启通道 0~3 void Adc_Init(void) { ADC_InitTypeDef ADC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_ADC1 , ENABLE ); //使能 ADC1 通道时钟 RCC_ADCCLKConfig(RCC_PCLK2_Div6); //设置 ADC 分频因子 6 //72M/6=12,ADC 最大时间不能超过 14M ALIENTEK MiniSTM32 V3.0 开发板教程 292 STM32 不完全手册 (库函数版) //PA1 作为模拟通道输入引脚 GPIO_InitStructure.GPIO_Pin =GPIO_Pin_1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;//模拟输入 GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化 GPIOA.1 ADC_DeInit(ADC1); //复位 ADC1,将外设 ADC1 的全部寄存器重设为缺省值 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC 独立模式 ADC_InitStructure.ADC_ScanConvMode = DISABLE; //单通道模式 ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //单次转换模式 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;//转换由 //软件而不是外部触发启动 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC 数据右对齐 ADC_InitStructure.ADC_NbrOfChannel = 1; //顺序进行规则转换的ADC通道的数目 ADC_Init(ADC1, &ADC_InitStructure); //根据指定的参数初始化外设 ADCx ADC_Cmd(ADC1, ENABLE); //使能指定的 ADC1 ADC_ResetCalibration(ADC1); //开启复位校准 while(ADC_GetResetCalibrationStatus(ADC1)); //等待复位校准结束 ADC_StartCalibration(ADC1); //开启 AD 校准 while(ADC_GetCalibrationStatus(ADC1)); //等待校准结束 } //获得 ADC 值 //ch:通道值 0~3 u16 Get_Adc(u8 ch) { //设置指定 ADC 的规则组通道,设置它们的转化顺序和采样时间 ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_239Cycles5 ); //通道 1 //规则采样顺序值为 1,采样时间为 239.5 周期 ADC_SoftwareStartConvCmd(ADC1, ENABLE); //使能指定的 ADC1 的软件转换功能 while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束 return ADC_GetConversionValue(ADC1); //返回最近一次 ADC1 规则组的转换结果 } u16 Get_Adc_Average(u8 ch,u8 times) { u32 temp_val=0; u8 t; for(t=0;t


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3