用ADSP

您所在的位置:网站首页 spiflash驱动 用ADSP

用ADSP

2024-07-05 23:51| 来源: 网络整理| 查看: 265

作者的话

本文用到的硬件如下:

ADSP-21489EVB开发板产品链接:

https://item.taobao.com/item.htm?id=539694123232&spm=a1z10.5-c.w4002-5192690539.15.467c40d8gngZ5W

在这里插入图片描述

AD-HP530ICE仿真器产品链接:

https://item.taobao.com/item.htm?id=38007242820&spm=a1z10.5-c.w4002-5192690539.11.7fef4901MmOMav

软件准备:

Visual DSP++ CCES SigmaStudio

硬件链接示意图

在这里插入图片描述 SPIflash设计的硬件原理图

在这里插入图片描述

编程

此章将详细讲解如何使用 VDSP 软件来进行 SPIFLASH 编程,生成 boot 用的 LDR 文件。我们以按键控制 LED 灯的程序来做例程讲解。

把工程拖到 VDSP 软件中来。

在这里插入图片描述

在工程名上按鼠标右键,选择“Project Options…”

在这里插入图片描述

根据芯片的实际版本,为工程选择一个芯片版本,将“Type”选为“Loader File”。我们现在用的 21489 都是 0.2 版,所以就选择 0.2。

在这里插入图片描述

按下图为生成的 LDR 文件选择格式,设置完成后点“确定”按钮,完成 LDR 文件的配置。489_spi 文件位于 FlashDriver 文件夹里的 SPIFLASH 文件夹下。

在这里插入图片描述

选择“ ReBuild all“按钮全编译工程。

在这里插入图片描述

编译完成后,会看到生成文件提示。该文件默认生成地址为当前工程的 Debug 文件夹下。

在这里插入图片描述

在这里插入图片描述

烧写

选择 Tools 里的 Flash Programmer。特别注意,一定要链接好 session,才有此选项!

在这里插入图片描述

为 SPIFLASH 加载一个“.dxe”格式的驱动文件,这个文件在 “Flash Driver”文件夹下。

这个是 Flash 的烧写驱动,每一个型号的 Flash 都需要专门对应自己的驱动,ADI 提供了一个驱动源码,如果用户的 Flash 型号与原厂提供的这个不符,则需要对驱动进行修改。我们开发板使用的就是ADI原厂的这个Flash型号,所以就可以直接用这个Driver,不用做任何修改。在这里 OP 也建议大家都用原厂提供的这个型号,否则自己改 Flash烧写驱动,还是一件挺麻烦的事情。

在这里插入图片描述

找到“ADSP21489_SPIFlashDriver”文件。

在这里插入图片描述

按下图选择选项,然后点“ Data”后面的按钮,找到 ADSP21489_PBLED 工程下 Debug 文件夹下刚才生成的“ ADSP21489_PBLED.ldr”文件。

在这里插入图片描述

烧写过程中的读条,请静心等待。(由于选择的是擦空整个 Flash,然后再写入,所以进度条有点慢,刚开始的时候不读条是在擦空,后面如果自己做板子,空白 Flash 进行烧写,则可以选不擦出直接烧,读条进度就很快了)

在这里插入图片描述

完成烧写。

在这里插入图片描述

断开链接,完整 Flash 编程和烧写得工作。

在这里插入图片描述

将 BOOT 开关 SW2 和 SW3 分别拨到 ON 和 OFF,设置成 SPIFLASH 启动

拔掉电源插头,重新上电,并打开电源开关,按下按键,相应的 LED 灯亮,验证完成。

驱动程序源码

/* includes / #ifdef ADSP21469 #include #include #elif ADSP21479 #include #include #elif ADSP21489 #include #include #else #error "** The flash driver does not yet support this processor ***" #endif #include #include #include #include

#include #include

#define NRDY BIT_0 #define PAGE_LENGTH 64 //(in 32-bit words) #define NUM_SECTORS 32 /* number of sectors in the flash device */

static char *pFlashDesc = “STMicro. M25P16”; static char *pDeviceCompany = “STMicroelectronics”;

static int gNumSectors = NUM_SECTORS;

#undef TIMEOUT #undef DELAY

/* flash commands */ #define SPI_WREN (0x06) //Set Write Enable Latch #define SPI_WRDI (0x04) //Reset Write Enable Latch #define SPI_RDID (0x9F) //Read Identification #define SPI_RDSR (0x05) //Read Status Register #define SPI_WRSR (0x01) //Write Status Register #define SPI_READ (0x03) //Read data from memory #define SPI_FAST_READ (0x0B) //Read data from memory #define SPI_PP (0x02) //Program Data into memory #define SPI_SE (0xD8) //Erase one sector in memory #define SPI_BE (0xC7) //Erase all memory #define WIP (0x1) //Check the write in progress bit of the SPI status register #define WEL (0x2) //Check the write enable bit of the SPI status register

#define SPI_PAGE_SIZE (528) #define SPI_SECTORS (512) #define SPI_SECTOR_SIZE (4224) #define SPI_SECTOR_DIFF (3968) #define PAGE_BITS (10) #define PAGE_SIZE_DIFF (496)

#define DELAY 300 #define TIMEOUT 35000*64

/* function prototypes */ static ERROR_CODE EraseFlash(unsigned long ulStartAddr); static ERROR_CODE EraseBlock( int nBlock, unsigned long ulStartAddr ); static ERROR_CODE GetCodes(int *pnManCode, int *pnDevCode, unsigned long ulStartAddr); static ERROR_CODE GetSectorNumber( unsigned long ulAddr, int *pnSector ); static ERROR_CODE GetSectorStartEnd( unsigned long *ulStartOff, unsigned long *ulEndOff, int nSector ); static ERROR_CODE ReadFlash(unsigned long ulOffset, unsigned short *pusValue ); static ERROR_CODE ResetFlash(unsigned long ulStartAddr); static ERROR_CODE WriteFlash(unsigned long ulOffset, unsigned short usValue ); static unsigned long GetFlashStartAddress( unsigned long ulAddr);

static ERROR_CODE ReadStatusRegister(int *pStatus); static ERROR_CODE Wait_For_SPIF(void); static ERROR_CODE SendSingleCommand( const int nCommand ); static ERROR_CODE Wait_For_RDY( void ); static void Assert_SPI_CS(void); static void Clear_SPI_CS(void); static ERROR_CODE WriteByteToSPI(const int byByte, const int msb_lsb); static ERROR_CODE ReadByteFromSPI(int *pbyByte, const int msb_lsb);

ERROR_CODE m25p16_Open(void) { /* setup baud rate */ *pSPIBAUD = BAUD_RATE_DIVISOR;

return (NO_ERR);

}

ERROR_CODE m25p16_Close(void) { return (NO_ERR); }

ERROR_CODE m25p16_Read( unsigned short *pusData, unsigned long ulStartAddress, unsigned int uiCount ) { ERROR_CODE Result = NO_ERR; unsigned int i = 0; unsigned short *pusCurrentData = pusData; unsigned long ulCurrentAddress = ulStartAddress;

for (i = 0; i < uiCount; i++, ulCurrentAddress++, pusCurrentData++) { Assert_SPI_CS(); // 1 byte of command if( NO_ERR != WriteByteToSPI( SPI_READ, MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of address if( NO_ERR != WriteByteToSPI( (ulCurrentAddress >> 16), MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of address if( NO_ERR != WriteByteToSPI( (ulCurrentAddress >> 8), MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of address if( NO_ERR != WriteByteToSPI( ulCurrentAddress, MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of garbage data if( NO_ERR != ReadByteFromSPI( (int*)pusCurrentData, 0 ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of GOOD data if( NO_ERR != ReadByteFromSPI( (int*)pusCurrentData, 0 ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } Clear_SPI_CS(); } return(Result);

}

ERROR_CODE m25p16_Write( unsigned short *pusData, unsigned long ulStartAddress, unsigned int uiCount ) { ERROR_CODE Result = NO_ERR; unsigned int i = 0; unsigned short *pusCurrentData = pusData; unsigned long ulCurrentAddress = ulStartAddress;

for (i = 0; i < uiCount; i++, ulCurrentAddress++, pusCurrentData++) { SendSingleCommand( SPI_WREN ); // write enable Assert_SPI_CS(); // 1 byte of command if( NO_ERR != WriteByteToSPI( SPI_PP, MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of address if( NO_ERR != WriteByteToSPI( (ulCurrentAddress >> 16), MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of address if( NO_ERR != WriteByteToSPI( (ulCurrentAddress >> 8), MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of address if( NO_ERR != WriteByteToSPI( ulCurrentAddress, MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of data if( NO_ERR != WriteByteToSPI( *pusCurrentData, 0 ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } Clear_SPI_CS(); // wait for the write to complete. if( NO_ERR != Wait_For_RDY() ) { return POLL_TIMEOUT; } // send the write disable command return SendSingleCommand( SPI_WRDI ); // write disable } return(Result);

}

ERROR_CODE m25p16_Control( unsigned int uiCmd, COMMAND_STRUCT *pCmdStruct) { ERROR_CODE ErrorCode = NO_ERR;

// switch on the command switch ( uiCmd ) { // erase all case CNTRL_ERASE_ALL: ErrorCode = EraseFlash(pCmdStruct->SEraseAll.ulFlashStartAddr); break; // erase sector case CNTRL_ERASE_SECT: ErrorCode = EraseBlock( pCmdStruct->SEraseSect.nSectorNum, pCmdStruct->SEraseSect.ulFlashStartAddr ); break; // get manufacturer and device codes case CNTRL_GET_CODES: ErrorCode = GetCodes((int *)pCmdStruct->SGetCodes.pManCode, (int *)pCmdStruct->SGetCodes.pDevCode, (unsigned long)pCmdStruct->SGetCodes.ulFlashStartAddr); break; case CNTRL_GET_DESC: //Filling the contents with data pCmdStruct->SGetDesc.pDesc = pFlashDesc; pCmdStruct->SGetDesc.pFlashCompany = pDeviceCompany; break; // get sector number based on address case CNTRL_GET_SECTNUM: ErrorCode = GetSectorNumber( pCmdStruct->SGetSectNum.ulOffset, (int *)pCmdStruct->SGetSectNum.pSectorNum ); break; // get sector number start and end offset case CNTRL_GET_SECSTARTEND: ErrorCode = GetSectorStartEnd( pCmdStruct->SSectStartEnd.pStartOffset, pCmdStruct->SSectStartEnd.pEndOffset, pCmdStruct->SSectStartEnd.nSectorNum ); break; // get the number of sectors case CNTRL_GETNUM_SECTORS: pCmdStruct->SGetNumSectors.pnNumSectors[0] = gNumSectors; break; // reset case CNTRL_RESET: ErrorCode = ResetFlash(pCmdStruct->SReset.ulFlashStartAddr); break; // no command or unknown command do nothing default: // set our error ErrorCode = UNKNOWN_COMMAND; break; } // return return(ErrorCode);

}

//----------- R e s e t F l a s h ( ) ----------// // // PURPOSE // Sends a “reset” command to the flash. // // INPUTS // unsigned long ulStartAddr - flash start address // // RETURN VALUE // ERROR_CODE - value if any error occurs // NO_ERR - otherwise

ERROR_CODE ResetFlash(unsigned long ulAddr) {

ERROR_CODE ErrorCode = NO_ERR; int nStatus; ErrorCode = ReadStatusRegister(&nStatus); return ErrorCode;

}

//----------- E r a s e F l a s h ( ) ----------// // // PURPOSE // Sends an “erase all” command to the flash. // // INPUTS // unsigned long ulStartAddr - flash start address // // RETURN VALUE // ERROR_CODE - value if any error occurs // NO_ERR - otherwise

ERROR_CODE EraseFlash(unsigned long ulAddr) {

int nTimeout = 1000; if( NO_ERR != SendSingleCommand( SPI_WREN ) ) // write enable { return POLL_TIMEOUT; } if( NO_ERR != SendSingleCommand( SPI_BE ) ) // erase command { return POLL_TIMEOUT; } // The Wait_For_RDY() function will timeout after 1000 loops, // however that is not long enough for an erase, so it's enclosed // here to give it 1000 * 1000 loops, long enough for an erase operation while(nTimeout-- > 0 ) { if( NO_ERR == Wait_For_RDY() ) { // send the write disable command return SendSingleCommand( SPI_WRDI ); // write disable } } return POLL_TIMEOUT;

}

//----------- E r a s e B l o c k ( ) ----------// // // PURPOSE // Sends an “erase block” command to the flash. // // INPUTS // int nBlock - block to erase // unsigned long ulStartAddr - flash start address // // RETURN VALUE // ERROR_CODE - value if any error occurs // NO_ERR - otherwise

ERROR_CODE EraseBlock( int nBlock, unsigned long ulAddr ) {

ERROR_CODE ErrorCode = NO_ERR; //tells us if there was an error erasing flash unsigned long ulSectStart = 0x0; //stores the sector start offset unsigned long ulSectEnd = 0x0; //stores the sector end offset(however we do not use it here) int nTimeout = 1000; int nSecAddr = 0; // Get the sector start offset // we get the end offset too however we do not actually use it for Erase sector GetSectorStartEnd( &ulSectStart, &ulSectEnd, nBlock ); SendSingleCommand( SPI_WREN ); // write enable Assert_SPI_CS(); // 1 byte of data if( NO_ERR != WriteByteToSPI( SPI_SE, MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of address if( NO_ERR != WriteByteToSPI( (ulSectStart >> 16), MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of address if( NO_ERR != WriteByteToSPI( (ulSectStart >> 8), MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of address if( NO_ERR != WriteByteToSPI( ulSectStart, MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } Clear_SPI_CS(); // The Wait_For_RDY() function will timeout after 1000 loops, // however that is not long enough for an erase, so it's enclosed // here to give it 1000 * 1000 loops, long enough for an erase operation while(nTimeout-- > 0 ) { if( NO_ERR == Wait_For_RDY() ) { // send the write disable command return SendSingleCommand( SPI_WRDI ); // write disable } } return POLL_TIMEOUT;

}

//----------- G e t C o d e s ( ) ----------// // // PURPOSE // Sends an “auto select” command to the flash which will allow // us to get the manufacturer and device codes. // // INPUTS // int *pnManCode - pointer to manufacture code // int *pnDevCode - pointer to device code // unsigned long ulStartAddr - flash start address // // RETURN VALUE // ERROR_CODE - value if any error occurs // NO_ERR - otherwise

ERROR_CODE GetCodes(int *pnManCode, int *pnDevCode, unsigned long ulAddr) { int wWord = 0;

Assert_SPI_CS(); if( NO_ERR != WriteByteToSPI( SPI_RDID, MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // This is a dummy read which pulls in the // SO data clocked in from the write. if( NO_ERR != ReadByteFromSPI(&wWord, MSBF) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // this is the real data after the write if( NO_ERR != ReadByteFromSPI(pnManCode, MSBF) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // This is a dummy read which pulls in the // SO data clocked in from the write. if( NO_ERR != ReadByteFromSPI(&wWord, MSBF) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // this is the real data after the write if( NO_ERR != ReadByteFromSPI(pnDevCode, MSBF) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } Clear_SPI_CS(); return ResetFlash(ulAddr);

}

//----------- G e t S e c t o r N u m b e r ( ) ----------// // // PURPOSE // Gets a sector number based on the offset. // // INPUTS // unsigned long ulAddr - absolute address // int *pnSector - pointer to sector number // // RETURN VALUE // ERROR_CODE - value if any error occurs // NO_ERR - otherwise

ERROR_CODE GetSectorNumber( unsigned long ulAddr, int *pnSector ) { int nSector = 0; int i; int error_code = 1; unsigned long ulMask; //offset mask unsigned long ulOffset; //offset unsigned long ulStartOff; unsigned long ulEndOff;

ulMask = 0x7ffffff; ulOffset = ulAddr & ulMask; for(i = 0; i < gNumSectors; i++) { GetSectorStartEnd(&ulStartOff, &ulEndOff, i); if ( (ulOffset >= ulStartOff) && (ulOffset = 0 ) && ( nSector < gNumSectors ) ) // 32 sectors { *ulStartOff = nSector * ulSectorSize; *ulEndOff = ( (*ulStartOff) + ulSectorSize - 1 ); } else return INVALID_SECTOR; // ok return NO_ERR;

}

//----------- G e t F l a s h S t a r t A d d r e s s ( ) ----------// // // PURPOSE // Gets flash start address from an absolute address. // // INPUTS // unsigned long ulAddr - absolute address // // RETURN VALUE // unsigned long - Flash start address

unsigned long GetFlashStartAddress( unsigned long ulAddr) {

ERROR_CODE ErrorCode = NO_ERR; //tells us if there was an error erasing flash unsigned long ulFlashStartAddr; //flash start address ulFlashStartAddr = 0; return(ulFlashStartAddr);

}

//----------- R e a d F l a s h ( ) ----------// // // PURPOSE // Reads a value from an address in flash. // // INPUTS // unsigned long ulAddr - the address to read from // int pnValue - pointer to store value read from flash // // RETURN VALUE // ERROR_CODE - value if any error occurs // NO_ERR - otherwise

ERROR_CODE ReadFlash( unsigned long ulAddr, unsigned short *pusValue ) {

Assert_SPI_CS(); // 1 byte of command if( NO_ERR != WriteByteToSPI( SPI_READ, MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of address if( NO_ERR != WriteByteToSPI( (ulAddr >> 16), MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of address if( NO_ERR != WriteByteToSPI( (ulAddr >> 8), MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of address if( NO_ERR != WriteByteToSPI( ulAddr, MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of garbage data if( NO_ERR != ReadByteFromSPI( (int*)pusValue, 0 ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of GOOD data if( NO_ERR != ReadByteFromSPI( (int*)pusValue, 0 ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } Clear_SPI_CS(); // ok return NO_ERR;

}

//----------- W r i t e F l a s h ( ) ----------// // // PURPOSE // Write a value to an address in flash. // // INPUTS // unsigned long ulAddr - address to write to // unsigned short nValue - value to write // // RETURN VALUE // ERROR_CODE - value if any error occurs // NO_ERR - otherwise

ERROR_CODE WriteFlash( unsigned long ulAddr, unsigned short usValue ) { SendSingleCommand( SPI_WREN ); // write enable

Assert_SPI_CS(); // 1 byte of command if( NO_ERR != WriteByteToSPI( SPI_PP, MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of address if( NO_ERR != WriteByteToSPI( (ulAddr >> 16), MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of address if( NO_ERR != WriteByteToSPI( (ulAddr >> 8), MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of address if( NO_ERR != WriteByteToSPI( ulAddr, MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // 1 byte of data if( NO_ERR != WriteByteToSPI( usValue, 0 ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } Clear_SPI_CS(); // wait for the write to complete. if( NO_ERR != Wait_For_RDY() ) { return POLL_TIMEOUT; } // send the write disable command return SendSingleCommand( SPI_WRDI ); // write disable

}

//----------- R e a d S t a t u s R e g i s t e r ( ) ----------// // // PURPOSE (2 Bytes) // Returns the 8-bit value of the status register. // // OUTPUTS second read byte , // first read byte is garbage. // Core sends the command // // RETURN VALUE // Staus of the register

ERROR_CODE ReadStatusRegister(int *pStatus) { int wWord = 0;

// clear the RX buffer *pSPICTL |= (RXFLSH); asm("nop;"); asm("nop;"); asm("nop;"); Assert_SPI_CS(); if( NO_ERR != WriteByteToSPI( SPI_RDSR, MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // This is a dummy read which pulls in the // SO data clocked in from the write. if( NO_ERR != ReadByteFromSPI(pStatus, MSBF) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } // this is the real data after the write if( NO_ERR != ReadByteFromSPI(pStatus, MSBF) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } Clear_SPI_CS(); return NO_ERR;

}

// // // ERROR_CODE WriteByteToSPI(const int byByte, const int msb_lsb) // // Writes one byte to the SPI port can write in either msb or lsb format // waits for the spi to clear the SPIF bit meaning the data // has been sent // //

ERROR_CODE WriteByteToSPI(const int byByte, const int msb_lsb) { int nTimeOut = 100000; int n;

if( NO_ERR != Wait_For_SPIF() ) { return POLL_TIMEOUT; } while( (TXS & *pSPISTAT) ) { if( nTimeOut-- < 0 ) { return POLL_TIMEOUT; } } *pSPICTL = (SPIEN|SPIMS|SENDZ|TIMOD1|WL8|msb_lsb); asm("nop;"); asm("nop;"); asm("nop;"); *pTXSPI = byByte; if( NO_ERR != Wait_For_SPIF() ) { return POLL_TIMEOUT; } return NO_ERR;

}

// // // ERROR_CODE ReadByteFromSPI(int *pbyByte, const int msb_lsb) // // Reads one byte from the spi port. This may or may not cause a sclk or send // event. If there is something waiting in the spi RX buffer, this will not // cause an sclk shift from the spi // //

ERROR_CODE ReadByteFromSPI(int *pbyByte, const int msb_lsb) { int nTimeOut = 1000;

if( NO_ERR != Wait_For_SPIF() ) { return POLL_TIMEOUT; } // don't read until there is something to read. nTimeOut = 1000; while( !(RXS & *pSPISTAT) ) { if( nTimeOut-- < 0 ) { return POLL_TIMEOUT; } } *pSPICTL = (SPIEN|SPIMS|SENDZ|WL8|msb_lsb); asm("nop;"); asm("nop;"); asm("nop;"); *pbyByte = *pRXSPI; return NO_ERR;

}

// // // void Assert_SPI_CS(void) // // Asserts the CS on FLG4 setup by the SRU // //

void Assert_SPI_CS(void) { int n;

#if ( defined(ADSP21375) || defined(ADSP21369) || defined(ADSP21469) || defined (ADSP21479)|| defined (ADSP21489) ) //Then control the level of flag 4 sysreg_bit_clr( sysreg_FLAGS, FLG4 ); //logic low #elif (ADSP21364) || (ADSP21262) //Then control the level of flag 0 sysreg_bit_clr( sysreg_FLAGS, FLG0 ); //logic low #endif

*pSPIBAUD = BAUD_RATE_DIVISOR;

}

// // // void Clear_SPI_CS(void) // // DE-Asserts the CS on FLG4 setup by the SRU // //

void Clear_SPI_CS(void) { int n;

#if ( defined(ADSP21375) || defined(ADSP21369) || defined(ADSP21469) || defined (ADSP21479) || defined (ADSP21489) ) //Then control the level of flag 4 sysreg_bit_set( sysreg_FLAGS, FLG4 ); //Logic high #elif (ADSP21364) || (ADSP21262) //Then control the level of flag 0 sysreg_bit_set( sysreg_FLAGS, FLG0 ); //Logic high #endif *pSPIBAUD = 0;

}

//----------- W a i t _ f o r _ S P I F ( ) ----------// // // PURPOSE (1 Byte) // Polls the SPIF (SPI single word transfer complete) bit // of SPISTAT until the transfer is complete. //

ERROR_CODE Wait_For_SPIF(void) {

int nTimeout = 10000; // status updates can be delayed up to 10 cycles // so wait at least 10 cycles before even // checking them int n; // make sure nothing is waiting to be sent while( !(SPIF & *pSPISTAT) ) { if( nTimeout-- < 0 ) { return POLL_TIMEOUT; } } return NO_ERR;

}

ERROR_CODE SendSingleCommand( const int iCommand ) {

Assert_SPI_CS(); if( NO_ERR != WriteByteToSPI( iCommand, MSBF ) ) { Clear_SPI_CS(); return POLL_TIMEOUT; } Clear_SPI_CS(); return NO_ERR;

}

//----------- W a i t _ f o r _ R D Y ( ) ----------// // // PURPOSE (1 Byte) // Polls the RDY (Write In Progress) bit of the Flash’s status // register until the Flash is finished with its access. Accesses // that are affected by a latency are Page_Program, Sector_Erase, // and Block_Erase.

ERROR_CODE Wait_For_RDY( void ) { int nTimeout = 10000; int n; int iTest;

while(nTimeout-- > 0) { ReadStatusRegister(&iTest); if( !(iTest & NRDY) ) { return NO_ERR; } }; // we can return return POLL_TIMEOUT;

}

main.c

#ifdef ADSP21489 #include #include #elif ADSP21479 #include #include #endif

#include /* malloc */ #include #include #include #include #include

#ifndef TRUE #define TRUE (1) #endif

#ifndef FALSE #define FALSE (0) #endif

#define FLASH_START_ADDR 0x000000 #define BUFFER_SIZE 0x400 //#define BAUD_RATE_DIVISOR 100

/* Flash Programmer commands */ typedef enum { FLASH_NO_COMMAND, // 0 FLASH_GET_CODES, // 1 FLASH_RESET, // 2 FLASH_WRITE, // 3 FLASH_FILL, // 4 FLASH_ERASE_ALL, // 5 FLASH_ERASE_SECT, // 6 FLASH_READ, // 7 FLASH_GET_SECTNUM, // 8 FLASH_GET_SECSTARTEND, // 9 }enProgCmds;

//----- g l o b a l s -----//

char *AFP_Title ; // EzKit info char *AFP_Description; // Device Description char *AFP_DeviceCompany; // Device Company char *AFP_DrvVersion = “1.00.0”; // Driver Version char *AFP_BuildDate = DATE; // Driver Build Date enProgCmds AFP_Command = FLASH_NO_COMMAND; // command sent down from the GUI int AFP_ManCode = -1; // manufacturer code int AFP_DevCode = -1; // device code unsigned long AFP_Offset = 0x0; // offset into flash int *AFP_Buffer; // buffer used to read and write flash long AFP_Size = BUFFER_SIZE; // buffer size long AFP_Count = -1; // count of locations to be read or written long AFP_Stride = -1; // stride used when reading or writing int AFP_NumSectors = -1; // number of sectors in the flash device int AFP_Sector = -1; // sector number int AFP_Error = NO_ERR; // contains last error encountered bool AFP_Verify = FALSE; // verify writes or not unsigned long AFP_StartOff = 0x0; // sector start offset unsigned long AFP_EndOff = 0x0; // sector end offset int AFP_FlashWidth = 0x8; // width of the flash device int *AFP_SectorInfo;

bool bExit = FALSE; //exit flag

#ifdef ADSP21489 static char *pEzKitTitle = “ADSP-21489 EZ-Board”; #elif ADSP21479 static char *pEzKitTitle = “ADSP-21479 EZ-Board”; #else #error “Error: Unknown EZ-Board” #endif

//----- c o n s t a n t d e f i n i t i o n s -----//

// structure for flash sector information

typedef struct _SECTORLOCATION { unsigned long ulStartOff; unsigned long ulEndOff; }SECTORLOCATION;

//----- f u n c t i o n p r o t o t y p e s -----//

ERROR_CODE OpenFlashDevice(void); ERROR_CODE GetNumSectors(void); ERROR_CODE AllocateAFPBuffer(void); ERROR_CODE GetSectorMap(SECTORLOCATION *pSectInfo); ERROR_CODE GetFlashInfo(void); ERROR_CODE ProcessCommand(void); ERROR_CODE FillData( unsigned long ulStart, long lCount, long lStride, int *pnData ); ERROR_CODE ReadData( unsigned long ulStart, long lCount, long lStride, int *pnData ); ERROR_CODE WriteData( unsigned long ulStart, long lCount, long lStride, int *pnData ); ERROR_CODE SetupForFlash(void); void FreeAFPBuffer(void); void InitPLL_SDRAM(void);

//------------- m a i n ( ) ----------------//

int main(void) {

SECTORLOCATION *pSectorInfo; ERROR_CODE Result; // result /* open flash driver */ AFP_Error = m25p16_Open(); // setup the device so the DSP can access it if (SetupForFlash() != NO_ERR) return FALSE; // get flash manufacturer & device codes, title & desc if( AFP_Error == NO_ERR ) { AFP_Error = GetFlashInfo(); } // get the number of sectors for this device if( AFP_Error == NO_ERR ) { AFP_Error = GetNumSectors(); } if( AFP_Error == NO_ERR ) { // malloc enough space to hold our start and end offsets pSectorInfo = (SECTORLOCATION *)malloc(AFP_NumSectors * sizeof(SECTORLOCATION)); } // allocate AFP_Buffer if( AFP_Error == NO_ERR ) { AFP_Error = AllocateAFPBuffer(); } // get sector map if( AFP_Error == NO_ERR ) { AFP_Error = GetSectorMap(pSectorInfo); } // point AFP_SectorInfo to our sector info structure if( AFP_Error == NO_ERR ) { AFP_SectorInfo = (int*)pSectorInfo; } // command processing loop while ( !bExit ) { // the plug-in will set a breakpoint at "AFP_BreakReady" so it knows // when we are ready for a new command because the DSP will halt // // the jump is used so that the label will be part of the debug // information in the driver image otherwise it may be left out // since the label is not referenced anywhere asm("AFP_BreakReady:"); asm("nop;"); if ( FALSE ) asm("jump AFP_BreakReady;"); // Make a call to the ProcessCommand AFP_Error = ProcessCommand(); } // Clear the AFP_Buffer FreeAFPBuffer(); if( pSectorInfo ) { free(pSectorInfo); pSectorInfo = NULL; } // Close the Device AFP_Error = m25p16_Close(); if (AFP_Error != NO_ERR) return FALSE; return TRUE;

}

//----------- P r o c e s s C o m m a n d ( ) ----------// // // PURPOSE // Process each command sent by the GUI based on the value in // the AFP_Command. // // RETURN VALUE // ERROR_CODE - value if any error occurs during Opcode scan // NO_ERR - otherwise // // CHANGES // 9-28-2005 Created

ERROR_CODE ProcessCommand() { ERROR_CODE ErrorCode = NO_ERR; //return error code

COMMAND_STRUCT CmdStruct; // switch on the command and fill command structure. switch ( AFP_Command ) { // erase all case FLASH_ERASE_ALL: CmdStruct.SEraseAll.ulFlashStartAddr = FLASH_START_ADDR; //FlashStartAddress ErrorCode = m25p16_Control( CNTRL_ERASE_ALL, &CmdStruct ); break; // erase sector case FLASH_ERASE_SECT: CmdStruct.SEraseSect.nSectorNum = AFP_Sector; // Sector Number to erase CmdStruct.SEraseSect.ulFlashStartAddr = FLASH_START_ADDR; // FlashStartAddress ErrorCode = m25p16_Control( CNTRL_ERASE_SECT, &CmdStruct); break; // fill case FLASH_FILL: ErrorCode = FillData( AFP_Offset, AFP_Count, AFP_Stride, AFP_Buffer ); break; // get manufacturer and device codes case FLASH_GET_CODES: CmdStruct.SGetCodes.pManCode = (unsigned long *)&AFP_ManCode; // Manufacturer Code CmdStruct.SGetCodes.pDevCode = (unsigned long *)&AFP_DevCode; // Device Code CmdStruct.SGetCodes.ulFlashStartAddr = FLASH_START_ADDR; ErrorCode = m25p16_Control( CNTRL_GET_CODES, &CmdStruct); break; // get sector number based on address case FLASH_GET_SECTNUM: CmdStruct.SGetSectNum.ulOffset = AFP_Offset; // offset from the base address CmdStruct.SGetSectNum.pSectorNum = (unsigned long *)&AFP_Sector; //Sector Number ErrorCode = m25p16_Control( CNTRL_GET_SECTNUM, &CmdStruct); break; // get sector number start and end offset case FLASH_GET_SECSTARTEND: CmdStruct.SSectStartEnd.nSectorNum = AFP_Sector; // Sector Number CmdStruct.SSectStartEnd.pStartOffset = &AFP_StartOff;// sector start address CmdStruct.SSectStartEnd.pEndOffset = &AFP_EndOff; // sector end address ErrorCode = m25p16_Control( CNTRL_GET_SECSTARTEND, &CmdStruct ); break; // read case FLASH_READ: ErrorCode = ReadData( AFP_Offset, AFP_Count, AFP_Stride, AFP_Buffer ); break; // reset case FLASH_RESET: CmdStruct.SGetCodes.ulFlashStartAddr = FLASH_START_ADDR; //Flash start address ErrorCode = m25p16_Control( CNTRL_RESET, &CmdStruct); break; // write case FLASH_WRITE: ErrorCode = WriteData( AFP_Offset, AFP_Count, AFP_Stride, AFP_Buffer ); break; // no command or unknown command do nothing case FLASH_NO_COMMAND: default: // set our error ErrorCode = UNKNOWN_COMMAND; break; } // clear the command AFP_Command = FLASH_NO_COMMAND; return(ErrorCode);

}

//----------- S e t u p F o r F l a s h ( ) ----------// // // PURPOSE // Perform necessary setup for the processor to talk to the // flash such as external memory interface registers, etc. // // RETURN VALUE // ERROR_CODE - value if any error occurs during Opcode scan // NO_ERR - otherwise

ERROR_CODE SetupForFlash() {

#if ( defined(ADSP21375) || defined(ADSP21369) || defined(ADSP21469) || defined(ADSP21479) || defined(ADSP21489)) SRU(SPI_CLK_O,DPI_PB03_I); SRU(HIGH,DPI_PBEN03_I);

// for the flag pins to act as chip select SRU(FLAG4_O, DPI_PB05_I); SRU(HIGH, DPI_PBEN05_I); //First set flag 4 as an output sysreg_bit_set( sysreg_FLAGS, FLG4O ); //asm("bit set flags FLG4O;"); sysreg_bit_set( sysreg_FLAGS, FLG4 ); //asm("bit set flags FLG4;"); //Logic high

#elif (ADSP21364) || (ADSP21262)

//First set flag 0 as an output sysreg_bit_set( sysreg_FLAGS, FLG0O ); //asm("bit set flags FLG0O;"); sysreg_bit_set( sysreg_FLAGS, FLG0 ); //asm("bit set flags FLG0;"); //Logic high

#endif

*pSPIDMAC = 0; *pSPIBAUD = 0; *pSPIFLG = 0xF80; *pSPICTL = 0x400; return NO_ERR;

}

//----------- A l l o c a t e A F P B u f f e r ( ) ----------// // // PURPOSE // Allocate memory for the AFP_Buffer // // RETURN VALUE // ERROR_CODE - value if any error occurs // NO_ERR - otherwise // // CHANGES // 9-28-2005 Created

ERROR_CODE AllocateAFPBuffer() {

ERROR_CODE ErrorCode = NO_ERR; //return error code // by making AFP_Buffer as big as possible the plug-in can send and // receive more data at a time making the data transfer quicker // // by allocating it on the heap the compiler does not create an // initialized array therefore making the driver image smaller // and faster to load // // The linker description file (LDF) could be modified so that // the heap is larger, therefore allowing the BUFFER_SIZE to increase. // the data type of the data being sent from the flash programmer GUI // is in bytes but we store the data as integers to make data // manipulation easier when actually programming the data. This is why // BUFFER_SIZE bytes are being allocated rather than BUFFER_SIZE * sizeof(int). AFP_Buffer = (int *)malloc(BUFFER_SIZE); // AFP_Buffer will be NULL if we could not allocate storage for the // buffer if ( AFP_Buffer == NULL ) { // tell GUI that our buffer was not initialized ErrorCode = BUFFER_IS_NULL; } return(ErrorCode);

}

//----------- F r e e A F P B u f f e r ( ) ----------// // // PURPOSE // Free the AFP_Buffer // // RETURN VALUE // ERROR_CODE - value if any error occurs // NO_ERR - otherwise // // CHANGES // 9-28-2005 Created

void FreeAFPBuffer() { // free the buffer if we were able to allocate one if ( AFP_Buffer ) free( AFP_Buffer );

}

//----------- G e t N u m S e c t o r s ( ) ----------// // // PURPOSE // Get the number of sectors for this device. // // RETURN VALUE // ERROR_CODE - value if any error occurs // NO_ERR - otherwise // // CHANGES // 9-28-2005 Created

ERROR_CODE GetNumSectors(void) {

ERROR_CODE ErrorCode = NO_ERR; //return error code GET_NUM_SECTORS_STRUCT SGetNumSectors; //structure for GetNumSectors SGetNumSectors.pnNumSectors = &AFP_NumSectors; ErrorCode = m25p16_Control( CNTRL_GETNUM_SECTORS, (COMMAND_STRUCT *)&SGetNumSectors ); return(ErrorCode);

}

//----------- G e t S e c t o r M a p ( ) ----------// // // PURPOSE // Get the start and end offset for each sector in the flash. // // RETURN VALUE // ERROR_CODE - value if any error occurs // NO_ERR - otherwise // // CHANGES // 9-28-2005 Created

ERROR_CODE GetSectorMap(SECTORLOCATION *pSectInfo) {

ERROR_CODE ErrorCode = NO_ERR; //return error code GET_SECTSTARTEND_STRUCT SSectStartEnd; //structure for GetSectStartEnd int i; //index //initiate sector information structures for( i=0;i


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3