详解如何生成LTspice模型,提高仿真水平(一)

您所在的位置:网站首页 spice仿真器 详解如何生成LTspice模型,提高仿真水平(一)

详解如何生成LTspice模型,提高仿真水平(一)

2022-06-14 04:46| 来源: 网络整理| 查看: 265

LTspice是一款的电路仿真软件, 它可以开发一个新的SPICE模拟电路,使复杂的开关电源系统的仿真实现。 LTspice具有专为提升现有多内核处理器的利用率而设计的多线程求解器。另外,该软件还内置了新型 SPARSE 矩阵求解器,这种求解器采用汇编语言,旨在接近现用 FPU (浮点处理单元) 的理论浮点计算限值。当采用四核处理器时,LTspice IV 可将大中型电路的仿真速度提高 3 倍。

如果在模拟设计中包含开关和多路复用器,那么还能改进开关/多路复用器LTspice®模型吗?答案:当然能,要生成自己的模型并不困难。在测试电路之后,发现实际电路与其设计图之间存在很多差异。电路的动态特性有点出乎意料,其噪声水平超出要求很多。我需要用仿真器来仿真该电路才能完全理解。

此电路中用到了模拟开关和运算放大器。采用的运算放大器已有完善的宏模型,但是模拟开关宏模型采用的并不是常见类型。开关宏模型文件的标题已经指出,模型参数仅对特定电源和温度有效。您可能不知道:我的电路的运行条件与电路模型不一样。关于模拟开关,它们太过通用,所以一个特定参数模型是不够的。现有的行业标准模型提供了一个不错的起点,但是,涉及到模拟性能领域时,您可能需要采用新宏模型方法来提高仿真水平。

当我开始研究ADI和其他IC公司提供的多种模拟开关宏模型时,我发现这些宏模型建模时都没有考虑与电源或温度的相关性。所以,我必须自行构建宏模型。

构建期间,我认为应由使用最简单的器件模型的模拟开关中的所有晶体管来提供要仿真的所有行为,但是连接控制引脚和MOS栅级的接口应是最简单的行为元件。这些都通过使用LTspice仿真器完成,只要将LTspice行为器件转化为类似SPICE的多项式函数,这些代码也可以在其他仿真器上使用。我们会按照特定的顺序进行仿真。

一、确定导通电阻的LTspice模型参数

我们将使用最简单的模型来仿真实际的MOS器件。为了针对导通电阻建模,我们将使用:W/L,宽度(W)/MOS器件的长度(L)。W/L表示器件的尺寸或相对强度;VTO, 阈值电压;gamma(γ),利用器件的反馈偏压来更改VTO 。反馈偏压是开启器件和其主体电压之间的压差;主体一般连接到开关中PMOS的正电源和NMOS的负电源。KP,在模型中,也被称为K’或K-prime。这个参数模拟工艺的强度,乘以W/L之后,用于调整MOS电流。在给定的工艺中,NMOS的 KP一般为PMOS的约2.5倍。RD, 器件漏极的寄生电阻。

不同的MOS工艺采用不同的内部参数。表1汇总了常见的CMOS工艺、其特性,以及和导通电阻相关的内部参数估算值。

LTspice模型

表1. 典型半导体工艺参数

来看一下图1中我们想要再现的ADG333A RON曲线。

LTspice模型

图1. RON与VD(VS)呈函数关系(双电源)。

在这个和其他模拟开关中,我们发现一个普遍趋势:更高的电源电压会降低导通电阻。对开关MOS栅级施加更高电压时,导通电阻会降低。我们也发现导通电阻会随输入模拟信号电平发生明显变化。在N区中,开关中的NMOS晶体管完全开启,且当模拟电压高于负电源轨时,PMOS晶体管开启,有助于降低总体导通电阻。区域N的转折点大致在高于负电源的 PMOS VTO处。

同样,在区域P中,开关的PMOS器件完全开启时,大致在低于正电源的 NMOS VTO,NMOS器件开始协助PMOS晶体管。区域M在区域N和P中间,NMOS和PMOS并行作用,但彼此之间的导通电阻存在差异,具体由电源轨内的模拟信号电平决定。要启动曲线拟合流程,我们先要估算每个晶体管的尺寸。低压曲线能够为晶体管RDS,ON提供最佳曲线拟合。在区域N中,在模拟信号位于负电源电压范围内时,PMOS器件关闭,部件的 RON相当于NMOS晶体管的RON 。其中

LTspice模型

我们使用40V NMOS典型工艺值,按照图1中的曲线设置 RDS,ON=38Ω,使用给定的工艺数值,发现WNMOS=2µA/(38Ω×(11×10–6µA/V2)×(10V–0.7V))=514µm。PMOS开关在上方曲线上的导通电阻为47Ω,宽度为936μm。

我使用图2中的LTspice测试电路。注意,参数RDN和RDP、寄生漏极电阻都是中等值。我最开始使用的值为1μ,这导致仿真器收敛变慢。RDN值为1时,仿真速度正常。添加RCONVERGENCE会为开关节点提供可收敛的电导,从而改善仿真器噪声和速度。我测试了一个浮动电流源,用于测量导通电阻。

LTspice模型

图2. 导通电阻测试电路。

图3显示了多种电源供电条件下的仿真结果。

LTspice模型

图3. 采用初始模型值的导通电阻仿真结果。

这个开端相当不错。低压端在VS=30V时,仿真的扭结点为3.6V,在数据手册中为2.7V。从中可以看出,我们应该降低PMOS VTO,但0.9V实际上已经是最小值。最好是可以调节PMOS的gamma,但这只是猜测。

接近最大电源时的扭结点为低于30V电源轨2.5V,在数据手册中应为~1V。各种gamma值会放大来自电轨的扭结电压;我们会将NMOSVTO设置为1V,将其gamma设置为0。gamma为0有些出乎意料,但我们只是尝试进行曲线拟合。图4所示为PMOS的gamma在几种电源值条件下步进变化时,得到的仿真结果。我们主要研究一下30V曲线,与较低电源相比,它最大化了gamma的影响。

LTspice模型

图4. gamma-p不同时的导通电阻仿真结果。

根据阶梯曲线,我们选择PMOSgamma=0.4。

关于RON,可以看出,10V曲线可以表示电源极端(限值)时对应的数据手册曲线,但对于20V和30V曲线,仿真产生的RON过低。在负电源极端,RONs= RDS,ON(NMOS)+RD(NMOS),在正电源极端,RONs=RDSON(PMOS)+RD(PMOS)。对于高压电源,RD参数比W/L更重要,对于低压电源,W/L起决定作用。我们在此会使用两个变量;这非常费时费力。我们将假设RON随电源变化,这是因为会对NMOS实施不同程度的增强,但是,RD值不会随电源电压变化(好吧,在漏极漂移中,它可能会变化,但是我们还是让问题保持简单一些)。如果我们注意到数据手册中RON在10V和30V电源之间的差异(11.4Ω),我们可以与上方仅采用WN(开关中NMOS的宽度)的曲线比较。在仿真中对WN实施一定的迭代之后,很明显可以看出我们需要WN=1170µm才能获得所需的ΔRON,明显高于最初的猜测值。图5显示了我们当前的结果。

LTspice模型

图5. WN 确定时的导通电阻仿真结果。

虽然NMOS的RON具备正确的电源灵敏度,在0V时,曲线的值仍然过低,我们必须增加固定RDN。在增加和迭代RDN之后,我们获得了最佳值,即RDN=22Ω,对应曲线如图6所示。

LTspice模型

图6.RDN 确定时的导通电阻仿真结果。

然后,我们确定WP(开关中PMOS的宽度),以仿真最大电压下的RON,得到WP=1700µm,,也远高于最初的猜测值。将RDP也设置为22Ω,我们获得了图7所示的最终RON曲线。

LTspice模型

图7.WP和RDP确定时的导通电阻仿真结果。

一致性非常不错;只有几个特性和数据手册不同。一是转折点在数据手册曲线中非常平缓,在仿真中则相当尖锐。这可能是因为使用的简单MOS模型不支持亚阈值导电性,且仿真器件在与电源轨相差VTO时会真正关闭。实际器件在VTO时不会关闭,而是平缓地降低该电压下的电流。

另一个错误在30V曲线中非常明显。与数据手册相比,RON在中等电压下要低15%。这可能是因为漏极漂移区域的JFET效应,这个效应也没有在模型中仿真出来。至于温度,相对比较符合,但符合程度不是很高,具体参见图8。

LTspice模型

图8. 各种温度下的导通电阻仿真和数据手册结果。

仿真结果与温度相关,但温度相关性不如数据手册曲线高。在仿真模型中,RD没有温度系数。RDS可以通过外部电阻和正确的温度系数模拟,但为了保持简单性,我们不予考虑。

二、获取电荷注入的LTspice模型参数

当MOS晶体管关闭时,通道中的电荷必须去往某处,所以会从漏极和源极端逸出。模拟开关关闭时,电荷也会外泄,这被称为电荷注入。常用的测量方法是:在开启的开关的一端设置固定电压,在另一端设置大电容。关闭时,电容会捕捉电荷,并发生小电压阶跃。现在,我们在MOS模型中添加栅级氧化层厚度TOX=1×10–7(栅级电容是最大的电荷注入源)。仿真设置如图9所示。

LTspice模型

图9. 电荷注入仿真设置。

数据手册电荷注入测试电路在开关的D端设置电压源,在开关的S端设置电容Cl。开关晶体管关闭时,Cl被隔离,通过开关集成注入其中的电荷。在这种情况下,VD波形在电源为30V时保持在24V,如图10所示。

LTspice模型

图10. 电荷注入仿真波形。

注入的电荷是V(S)和V(D)之间的电压跳变乘以10nF保持电容。我们可以在电源电压范围内实施开关电压VD阶跃,并且使用.meas语句来捕捉各个电压下的电荷注入值。图11显示了数据手册曲线结果和仿真结果。

LTspice模型

图11. 电荷注入数据手册和仿真波形。

我们简单的MOS模型不能很好地模拟数据手册曲线波形,但在数据手册曲线中,峰值电荷注入值为32pC,在仿真中为31pC。让人意外的是,这两个值非常接近,如果有必要,我们可以调节TOX来完善仿真结果。

两个曲线之间存在偏移,我们可以使用CCHARGE_INJECTION来进行补偿。使用某些值调整后,我们选择最优值CCHARGE_INJECTION=0.28pF。如果需要反向极性偏移, CCHARGE_INJECTION会重新连接至PMOS_on_when_low节点。

用调节电容CCHARGE_INJECTION来模拟电荷注入和模拟电压之间的关系,是一种简单而有效的模拟偏差方法。要是模拟的峰值注入值太小了怎么办?大多数电荷注入会引起开关栅极电压的波动,使电荷通过开关晶体管的栅极通道电容传送。若模拟注入过少,可直接增加一、两个栅级面积;为了达到这个目的,我们需要将开关器件的参数 L和 W按相同的系数提高,并且要保证 W/L的导通电阻率不会改变。与CCHARGE_INJECTION相比,我们将选择增加 NMOS和 L。或者,我们可以调节每个器件的TOX,以获得更好的电荷注入关联结果。这实际上不可行,但是,我们这只是仿真。在我们使用的简单模型中,TOX不会影响到其他仿真参数。

 

 



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3