深入浅出NIO之Selector实现原理

您所在的位置:网站首页 selector游戏 深入浅出NIO之Selector实现原理

深入浅出NIO之Selector实现原理

2024-07-15 21:25| 来源: 网络整理| 查看: 265

转载自:https://www.jianshu.com/p/0d497fe5484a

前言

Java NIO 由以下几个核心部分组成: 1、Buffer 2、Channel 3、Selector

Buffer和Channel在深入浅出NIO之Channel、Buffer一文中已经介绍过,本文主要讲解NIO的Selector实现原理。

之前进行socket编程时,accept方法会一直阻塞,直到有客户端请求的到来,并返回socket进行相应的处理。整个过程是流水线的,处理完一个请求,才能去获取并处理后面的请求,当然也可以把获取socket和处理socket的过程分开,一个线程负责accept,一个线程池负责处理请求。

但NIO提供了更好的解决方案,采用选择器(Selector)返回已经准备好的socket,并按顺序处理,基于通道(Channel)和缓冲区(Buffer)来进行数据的传输。

Selector

这里出来一个新概念,selector,具体是一个什么样的东西?

想想一个场景:在一个养鸡场,有这么一个人,每天的工作就是不停检查几个特殊的鸡笼,如果有鸡进来,有鸡出去,有鸡生蛋,有鸡生病等等,就把相应的情况记录下来,如果鸡场的负责人想知道情况,只需要询问那个人即可。

在这里,这个人就相当Selector,每个鸡笼相当于一个SocketChannel,每个线程通过一个Selector可以管理多个SocketChannel。

为了实现Selector管理多个SocketChannel,必须将具体的SocketChannel对象注册到Selector,并声明需要监听的事件(这样Selector才知道需要记录什么数据),一共有4种事件:

1、connect:客户端连接服务端事件,对应值为SelectionKey.OP_CONNECT(8) 2、accept:服务端接收客户端连接事件,对应值为SelectionKey.OP_ACCEPT(16) 3、read:读事件,对应值为SelectionKey.OP_READ(1) 4、write:写事件,对应值为SelectionKey.OP_WRITE(4)

这个很好理解,每次请求到达服务器,都是从connect开始,connect成功后,服务端开始准备accept,准备就绪,开始读数据,并处理,最后写回数据返回。

所以,当SocketChannel有对应的事件发生时,Selector都可以观察到,并进行相应的处理。

服务端代码

为了更好的理解,先看一段服务端的示例代码

ServerSocketChannel serverChannel = ServerSocketChannel.open(); serverChannel.configureBlocking(false); serverChannel.socket().bind(new InetSocketAddress(port)); Selector selector = Selector.open(); serverChannel.register(selector, SelectionKey.OP_ACCEPT); while(true){ int n = selector.select(); if (n == 0) continue; Iterator ite = this.selector.selectedKeys().iterator(); while(ite.hasNext()){ SelectionKey key = (SelectionKey)ite.next(); if (key.isAcceptable()){ SocketChannel clntChan = ((ServerSocketChannel) key.channel()).accept(); clntChan.configureBlocking(false); //将选择器注册到连接到的客户端信道, //并指定该信道key值的属性为OP_READ, //同时为该信道指定关联的附件 clntChan.register(key.selector(), SelectionKey.OP_READ, ByteBuffer.allocate(bufSize)); } if (key.isReadable()){ handleRead(key); } if (key.isWritable() && key.isValid()){ handleWrite(key); } if (key.isConnectable()){ System.out.println("isConnectable = true"); } ite.remove(); } }

服务端操作过程

1、创建ServerSocketChannel实例,并绑定指定端口; 2、创建Selector实例; 3、将serverSocketChannel注册到selector,并指定事件OP_ACCEPT,最底层的socket通过channel和selector建立关联; 4、如果没有准备好的socket,select方法会被阻塞一段时间并返回0; 5、如果底层有socket已经准备好,selector的select方法会返回socket的个数,而且selectedKeys方法会返回socket对应的事件(connect、accept、read or write); 6、根据事件类型,进行不同的处理逻辑;

在步骤3中,selector只注册了serverSocketChannel的OP_ACCEPT事件 1、如果有客户端A连接服务,执行select方法时,可以通过serverSocketChannel获取客户端A的socketChannel,并在selector上注册socketChannel的OP_READ事件。 2、如果客户端A发送数据,会触发read事件,这样下次轮询调用select方法时,就能通过socketChannel读取数据,同时在selector上注册该socketChannel的OP_WRITE事件,实现服务器往客户端写数据。

Selector实现原理

SocketChannel、ServerSocketChannel和Selector的实例初始化都通过SelectorProvider类实现,其中Selector是整个NIO Socket的核心实现。

public static SelectorProvider provider() { synchronized (lock) { if (provider != null) return provider; return AccessController.doPrivileged( new PrivilegedAction() { public SelectorProvider run() { if (loadProviderFromProperty()) return provider; if (loadProviderAsService()) return provider; provider = sun.nio.ch.DefaultSelectorProvider.create(); return provider; } }); } }

SelectorProvider在windows和linux下有不同的实现,provider方法会返回对应的实现。

这里不禁要问,Selector是如何做到同时管理多个socket?

下面我们看看Selector的具体实现,Selector初始化时,会实例化PollWrapper、SelectionKeyImpl数组和Pipe。

WindowsSelectorImpl(SelectorProvider sp) throws IOException { super(sp); pollWrapper = new PollArrayWrapper(INIT_CAP); wakeupPipe = Pipe.open(); wakeupSourceFd = ((SelChImpl)wakeupPipe.source()).getFDVal(); // Disable the Nagle algorithm so that the wakeup is more immediate SinkChannelImpl sink = (SinkChannelImpl)wakeupPipe.sink(); (sink.sc).socket().setTcpNoDelay(true); wakeupSinkFd = ((SelChImpl)sink).getFDVal(); pollWrapper.addWakeupSocket(wakeupSourceFd, 0); }

pollWrapper用Unsafe类申请一块物理内存pollfd,存放socket句柄fdVal和events,其中pollfd共8位,0-3位保存socket句柄,4-7位保存events。

 

pollWrapper提供了fdVal和event数据的相应操作,如添加操作通过Unsafe的putInt和putShort实现。

void putDescriptor(int i, int fd) { pollArray.putInt(SIZE_POLLFD * i + FD_OFFSET, fd); } void putEventOps(int i, int event) { pollArray.putShort(SIZE_POLLFD * i + EVENT_OFFSET, (short)event); }

先看看serverChannel.register(selector, SelectionKey.OP_ACCEPT)是如何实现的

public final SelectionKey register(Selector sel, int ops, Object att) throws ClosedChannelException { synchronized (regLock) { SelectionKey k = findKey(sel); if (k != null) { k.interestOps(ops); k.attach(att); } if (k == null) { // New registration synchronized (keyLock) { if (!isOpen()) throw new ClosedChannelException(); k = ((AbstractSelector)sel).register(this, ops, att); addKey(k); } } return k; } } 如果该channel和selector已经注册过,则直接添加事件和附件。否则通过selector实现注册过程。 protected final SelectionKey register(AbstractSelectableChannel ch, int ops, Object attachment) { if (!(ch instanceof SelChImpl)) throw new IllegalSelectorException(); SelectionKeyImpl k = new SelectionKeyImpl((SelChImpl)ch, this); k.attach(attachment); synchronized (publicKeys) { implRegister(k); } k.interestOps(ops); return k; } protected void implRegister(SelectionKeyImpl ski) { synchronized (closeLock) { if (pollWrapper == null) throw new ClosedSelectorException(); growIfNeeded(); channelArray[totalChannels] = ski; ski.setIndex(totalChannels); fdMap.put(ski); keys.add(ski); pollWrapper.addEntry(totalChannels, ski); totalChannels++; } }

1、以当前channel和selector为参数,初始化SelectionKeyImpl 对象selectionKeyImpl ,并添加附件attachment。 2、如果当前channel的数量totalChannels等于SelectionKeyImpl数组大小,对SelectionKeyImpl数组和pollWrapper进行扩容操作。 3、如果totalChannels % MAX_SELECTABLE_FDS == 0,则多开一个线程处理selector。 4、pollWrapper.addEntry将把selectionKeyImpl中的socket句柄添加到对应的pollfd。 5、k.interestOps(ops)方法最终也会把event添加到对应的pollfd。

所以,不管serverSocketChannel,还是socketChannel,在selector注册的事件,最终都保存在pollArray中。

接着,再来看看selector中的select是如何实现一次获取多个有事件发生的channel的,底层由selector实现类的doSelect方法实现,如下:

protected int doSelect(long timeout) throws IOException { if (channelArray == null) throw new ClosedSelectorException(); this.timeout = timeout; // set selector timeout processDeregisterQueue(); if (interruptTriggered) { resetWakeupSocket(); return 0; } // Calculate number of helper threads needed for poll. If necessary // threads are created here and start waiting on startLock adjustThreadsCount(); finishLock.reset(); // reset finishLock // Wakeup helper threads, waiting on startLock, so they start polling. // Redundant threads will exit here after wakeup. startLock.startThreads(); // do polling in the main thread. Main thread is responsible for // first MAX_SELECTABLE_FDS entries in pollArray. try { begin(); try { subSelector.poll(); } catch (IOException e) { finishLock.setException(e); // Save this exception } // Main thread is out of poll(). Wakeup others and wait for them if (threads.size() > 0) finishLock.waitForHelperThreads(); } finally { end(); } // Done with poll(). Set wakeupSocket to nonsignaled for the next run. finishLock.checkForException(); processDeregisterQueue(); int updated = updateSelectedKeys(); // Done with poll(). Set wakeupSocket to nonsignaled for the next run. resetWakeupSocket(); return updated; }

其中 subSelector.poll() 是select的核心,由native函数poll0实现,readFds、writeFds 和exceptFds数组用来保存底层select的结果,数组的第一个位置都是存放发生事件的socket的总数,其余位置存放发生事件的socket句柄fd。

private final int[] readFds = new int [MAX_SELECTABLE_FDS + 1]; private final int[] writeFds = new int [MAX_SELECTABLE_FDS + 1]; private final int[] exceptFds = new int [MAX_SELECTABLE_FDS + 1]; private int poll() throws IOException{ // poll for the main thread return poll0(pollWrapper.pollArrayAddress, Math.min(totalChannels, MAX_SELECTABLE_FDS), readFds, writeFds, exceptFds, timeout); }

执行 selector.select() ,poll0函数把指向socket句柄和事件的内存地址传给底层函数。 1、如果之前没有发生事件,程序就阻塞在select处,当然不会一直阻塞,因为epoll在timeout时间内如果没有事件,也会返回; 2、一旦有对应的事件发生,poll0方法就会返回; 3、processDeregisterQueue方法会清理那些已经cancelled的SelectionKey; 4、updateSelectedKeys方法统计有事件发生的SelectionKey数量,并把符合条件发生事件的SelectionKey添加到selectedKeys哈希表中,提供给后续使用。

在早期的JDK1.4和1.5 update10版本之前,Selector基于select/poll模型实现,是基于IO复用技术的非阻塞IO,不是异步IO。在JDK1.5 update10和linux core2.6以上版本,sun优化了Selctor的实现,底层使用epoll替换了select/poll。

read实现

通过遍历selector中的SelectionKeyImpl数组,获取发生事件的socketChannel对象,其中保存了对应的socket,实现如下

public int read(ByteBuffer buf) throws IOException { if (buf == null) throw new NullPointerException(); synchronized (readLock) { if (!ensureReadOpen()) return -1; int n = 0; try { begin(); synchronized (stateLock) { if (!isOpen()) { return 0; } readerThread = NativeThread.current(); } for (;;) { n = IOUtil.read(fd, buf, -1, nd); if ((n == IOStatus.INTERRUPTED) && isOpen()) { // The system call was interrupted but the channel // is still open, so retry continue; } return IOStatus.normalize(n); } } finally { readerCleanup(); // Clear reader thread // The end method, which end(n > 0 || (n == IOStatus.UNAVAILABLE)); // Extra case for socket channels: Asynchronous shutdown // synchronized (stateLock) { if ((n


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3