S30408焊接接头低温力学性能试验

您所在的位置:网站首页 s30408的屈服极限是多少 S30408焊接接头低温力学性能试验

S30408焊接接头低温力学性能试验

2024-07-14 20:00| 来源: 网络整理| 查看: 265

[1] SHI X, VARIAM H M P.Gas and LNG trading hubs, hub indexation and destination flexibility in East Asia[J]. Energy Policy, 2016, 96:587-596. [2] LEE J, RYU Y, KIM N, et al. Stud welding for fixation of cryogenic insulation of membrane tanks in LNG ship building[J]. Transactions of Nonferrous Metals Society of China, 2009, 19:s271-s275. [3] GB 150-2011. 压力容器[S]. 北京:中国标准出版社, 2012. GB 150-2011. Pressure vessels[S]. Beijing:Standards Press of China, 2012. [4] GB/T 18442-2011. 固定式真空绝热深冷压力容器[S]. 北京:中国标准出版社, 2012. GB/T 18442-2011. Static vacuum insulated cryogenic vessel[S].Standards Press of China, 2012. [5] IBRAHIM O H, IBRAHIM I S, KHALIFA T A F. Impact behavior of different stainless steel weldments at low temperatures[J]. Engineering Failure Analysis, 2010, 17(5):1069-1076. [6] MILITITSKY M, MATLOCK D K, REGULLY A, et al. Impact toughness properties of nickel-free austenitic stainless steels[J]. Materials Science and Engineering:A, 2008, 496(1):189-199. [7] 舒翔宇, 郑津洋, 寿比南, 等. 应变强化奥氏体不锈钢焊接接头冲击试验研究[J]. 浙江大学学报:工学版, 2012, 46(7):1162-1167. SHU Xiang-yu, ZHENG Jin-yang, SHOU Bi-nan, et al. Experimental study on impact behavior of austenitic stainless steel welding joints after cold stretching[J]. Journal of Zhejiang University:Engineering Science, 2012, 46(7):1162-1167. [8] 毛楠. 316L不锈钢焊接接头的组织和力学性能研究[D]. 哈尔滨工业大学, 2012. MAO Nan, Microstructure and mechanical properties of welded joint of 316L stainless steel[D]. Harbin Institute of Technology, 2012. [9] PARK W S, YOO S W, KIM M H,et al. Strain-rate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments[J]. Materials & Design, 2010, 31(8):3630-3640. [10] 郑津洋, 王珂, 黄泽,等. 液氮温度下奥氏体不锈钢强度试验研究[J]. 压力容器, 2014(8):1-6. ZHENG Jin-yang, WANG Ke, HUANG Ze, et al. Study on strength of austenitic stainless steel under liquid-nitrogen temperature[J]. Pressure Vessel Technology, 2014(8):1-6. [11] KIM J H, PARK W S, CHUN M S, et al. Effect of pre-straining on low-temperature mechanical behavior of AISI 304L[J]. Materials Science and Engineering:A, 2012, 543:50-57. [12] YOO S W, LEE C S, PARK W S, et al. Temperature and strain rate dependent constitutive model of TRIP steels for low-temperature applications[J]. Computational Materials Science, 2011, 50(7):2014-2027. [13] 王琼琦. 深冷处理提高奥氏体不锈钢服役性能机理的研究[D]. 华东理工大学, 2009. WANG Qiong-qi. A study of improvement of service properties of cryogenic treated stainless steels[D]. East China university of Science and Technology, 2009. [14] 刘俊伟. Mg-Al-Zn系合金板材中低温变形研究[D]. 湖南大学, 2009. LIU Jun-wei. Deformation characteristics of Mg-Al-Zn magnesium alloy sheets in moderate temperatures[D]. Hunan University, 2009. [15] 杜大鹏, 董湘怀. 基于位错密度的流动应力模型的研究[J]. 模具技术, 2010(3):6-8. DU Ya-peng, DONG Xiang-huai. Study on flow stress model based on dislocation density[J]. Die and Mould Technology, 2010(3):6-8. [16] 郑津洋, 李雅娴, 徐平,等. 应变强化用奥氏体不锈钢力学性能影响因素[J]. 解放军理工大学学报:自然科学版, 2011, 12(5):512-519. ZHENG Jin-yang, LI Ya-xian, XU Ping, et al. Influence factors of mechanical property for strain strengthening austenitic stainless steel[J]. Journal of PLA University of Science and Technology:Science Edition, 2011, 12(5):512-519. [17] 吴琳琳. 考虑三轴度效应的奥氏体不锈钢深冷容器强度预测方法及其应用研究[D]. 浙江大学, 2014. Wu Lin-lin. Research on strength behavior of austenitic stainless steel cryogenic pressure vessel considering triaxiality effect[D]. Zhejiang University, 2013. [18] 束德林. 工程材料力学性能[M]. 北京:机械工业出版社, 2003:8. [19] 高灵清, 朱金华, 李慧, 等. 高应变速率及低温对工业纯钛力学性能的影响[J]. 稀有金属材料与工程, 2008, 37(6):1051-1055. GAO Ling-qing, ZHU Jin-hua, LI Hui, et al. Effects of high strain rate and low temperature on mechanical properties of TA2[J]. Rare Metal Materials and Engineering, 2008, 37(6):1051-1055. [20] EN 10028-7:2016. Flat products made of steels for pressure purposes-Part 7:Stainless steels[S]. London:The British standards Institution, 2016. [21] KOTECKI D J, SIEWERT T A. WRC-1992 constitution diagram for stainless steel weld metals:a modification of the WRC-1988 diagram[J]. Welding Journal, 1992, 71(5):171-178. [22] 邓宝柱, 彭云, 廖丕博. 氮对316L不锈钢焊缝力学性能的影响[J]. 机械工程学报, 2011, 47(18):66-71. DengBao-zhu, PENG Yun, LIAO Pi-bo. Effect of nitrogen on the mechanical properties of weld metal of 316L austenitic stainless steel[J]. Journal of Mechanical Engineering, 2011, 47(18):66-71. [23] KUMAR S, SHAHI A S. Studies on metallurgical and impact toughness behavior of variably sensitized weld metal and heat affected zone of AISI 304L welds[J]. Materials & Design, 2016, 89:399-412. [24] KAMIYA O, KUMAGAI K, KIKUCHI Y. Effects of δferrite morphology on low temperature fracture toughness of SUS304L steel weld metal[J]. Transactions of the Japan Welding Society, 1990, 21(2):129-134. [25] 朱亮. 力学性能失配焊接接头的强度及变形行为[D]. 兰州理工大学, 2005. ZHU Liang. The deformation behaviors and the strength of welded joints with mechanical properties mismatch[D]. Lanzhou University of Technology, 2005. [26] MOCHIZUKI M, SHINTOMIT, HASHIMOTO Y, et al. Analytical study on deformation and strength in HAZ-softened welded joints of fine-grained steels[J]. Welding in the World, 2004, 48(9-10):2-12. [27] NB/T 47014-2011. 承压设备焊接工艺评定[S]. 北京:新华出版社, 2011. NB/T 47014-2011. Welding procedure qualification for pressure equipment[S]. Beijing:Xinhua Publishing House, 2011. [28] ASME BPVC.VⅢ.1-2017. ASME Boiler and pressure vessel code-Section VⅢ:Rules for construction of pressure vessels division1[S]. New York:The American Society of Mechanical Engineers, 2017. [29] 唐振廷. 冲击试样断口与力-位移曲线之间的关系[J]. 物理测试, 2004(4):1-5. TANG Yan-dong. Relationship between fracture and force-displacement curve of impact specimen[J]. Physics Examination and Testing, 2004(4):1-5.



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3