厌氧氨氧化颗粒污泥EPS的作用、成分及影响因素研究进展

您所在的位置:网站首页 rush的成分及作用 厌氧氨氧化颗粒污泥EPS的作用、成分及影响因素研究进展

厌氧氨氧化颗粒污泥EPS的作用、成分及影响因素研究进展

2024-05-31 14:12| 来源: 网络整理| 查看: 265

2.1.   EPS主要成分及其对EPS结构和稳定性的影响

在不同类型anammox颗粒污泥中,EPS各成分含量存在较大差异(表1)。这可能与反应器类型、接种污泥及培养策略有关,但对差异存在的内在机制还缺乏强有力的证明。EPS主要由蛋白质、核酸、多糖、脂质和存在于各种微生物聚集体内部的其他聚合化合物组成。其中,多糖(polysaccharide, PS)是EPS的主要成分,其次是腐殖质和蛋白质(protein, PN)。

由微生物分泌产生的EPS中含有大量胞外多糖。胞外多糖通过形成聚合物来促进微生物间的黏附从而增强颗粒污泥的稳定性。同时,多糖交联形成的水凝胶是维持颗粒污泥稳定的重要因素。凝胶可通过氢键、疏水性作用保持颗粒污泥的稳定性[11]。胞外多糖长主链之间的缠结以及丰富的结合位点桥接形成骨架,增强了微生物之间的黏附,有利于维持颗粒污泥的稳定状态[12]。PN含氨基并带正电荷,导致污泥表面负电荷减少,微生物间的静电斥力降低,细胞表面的疏水性增加,从而使微生物细胞更易于从水相中脱离出来并互相聚集。这说明PN含量的增加、PN/PS的增高可促进污泥颗粒化[13]。

胞外多糖可分为结合型胞外多糖和可溶性胞外多糖[14]。EPS具有多层空间结构,根据其结构特点一般分为固着性(bound-EPS,B-EPS)和溶解性(soluble-EPS,S-EPS)2种。其中,B-EPS的内层由紧密结合型(tightly bound-EPS,TB-EPS)组成,与细胞表面结合稳定;外层由松散附着(loosely bound-EPS,LB-EPS)组成,松散可分散[15]。自养anammox颗粒会比好氧/厌氧颗粒物分泌更多的EPS,而高基质浓度下培养的anammox颗粒具有更高EPS含量,且颗粒中EPS的分布存在较大差异[16]。JIA等[4]对比了18种不同条件下生成的anammox颗粒污泥,发现其中的TB-EPS与颗粒污泥形态密切相关,可作为厌氧氨氧化微生物存活能力和微生物聚集体形态的表征指标,且TB-EPS 含有的大量蛋白质疏水基团可促进微生物的聚集。有研究者采用可酶解多糖的淀粉酶对anammox颗粒污泥进行酶解,发现α-淀粉酶处理组颗粒污泥外边缘出现溶胀,而β-淀粉酶处理组颗粒污泥表面无明显变化,但出现破碎且稳定性明显下降[12]。β-D-呋喃葡萄糖集中分布在颗粒污泥最外层,蛋白质、脂类、α-呋喃葡萄糖和α-甘露糖则分布于整个颗粒污泥,主要集中在颗粒污泥外侧。蛋白质和脂类构成了厌氧氨氧化颗粒污泥的骨架,anammox菌则分布在蛋白质和脂类中间[17]。HOU等18]发现,EPS含量与化学组成主要受细菌的代谢作用影响,细菌的代谢性质也决定了EPS的聚集能力[18]。

Anammox颗粒污泥的粒径直接影响EPS含量及成分[19]。EPS的3层结构(S-EPS,TB-EPS和LB-EPS)会随粒径变化而变化。当粒径<0.5 mm时,S-EPS的含量(以每克VSS含有EPS质量计)占总EPS的48%以上,为121.0~302.3 mg·g−1,并随着粒径的增大而减小,在粒径为2.5 mm时占总EPS的35%。而TB-EPS含量随粒径增大而增大,由粒径< 0.2 mm时的95.6 mg·g−1增至粒径为2.5 mm时的334.1 mg·g−1,且随着anammox颗粒污泥粒径的增大,TB-EPS逐步取代S-EPS成为EPS的主要组分。而LB-EPS含量随粒径变化波动较小,保持在总EPS含量的24%以下[20]。粒径不同还会造成EPS中各组分含量的差异,粒径从0.5~1.4 mm增至> 2.8 mm,PN含量从(56.88±0.86) mg·g−1增至(98.59±2.10)mg·g−1,总EPS量从(68.05±0.97)mg·g−1 增至(94.26±2.20)mg·g−1 [21]。因此,控制反应器运行条件、调控适宜粒径、强化anammox颗粒污泥EPS的分泌,可增强颗粒污泥的运行稳定性。

2.2.   EPS中的PN/PS对其稳定性的影响

EPS中PN和PS两大组分在anammox颗粒污泥的形成、运行中发挥重要作用。在不同反应器类型及脱氮负荷条件下,anammox颗粒污泥的EPS含量与PN/PS存在显著差异。较高的脱氮负荷往往PN/PS较大,但二者并无线性相关性,这可能与运行环境条件有直接关系。当脱氮负荷为0~1 kg·(m3·d)−1时, anammox颗粒污泥在不同反应器运行条件下的EPS总量(以每克VSS含有EPS质量计)为13.35~850 mg ·g−1,PN/PS为0.54~7.66。同种接种污泥形成的anammox颗粒污泥PN/PS较为接近[17],而不同接种污泥和培养策略会对颗粒污泥PN/PS产生较大影响[16],但迄今为止的研究尚未对EPS的组分差异作出合理解释,还需进一步深入探究。

颗粒污泥EPS的PN/PS可用于表征其稳定性能和沉降性能。PN/PS为0.5~5时,颗粒污泥的稳定性和沉降性随比值增大而增强[22]。PN/PS大小与污泥表面疏水性、带电性及颗粒污泥的形成直接相关,污泥的相对疏水性会随着PN/PS的提高逐渐增强,从而促进anammox颗粒污泥的聚集,且随着颗粒污泥的形成PN/PS有较大幅度的增加[23]。anammox颗粒污泥EPS中的蛋白质是决定疏水性的主要成分,因此,随着PN/PS的升高,蛋白质占比越高,细胞电负性越强,微生物表面疏水性越好,颗粒化程度更强[24-25]。虽然EPS含量与颗粒污泥粒径无明显关联,但PN/PS受粒径影响变化较大。CHEN等[20]研究了4种不同粒径anammox颗粒污泥的EPS含量,发现小粒径(1.0~1.5 mm)颗粒污泥的PN/PS达3.81,厌氧氨氧化活性较大,EPS分泌量较高。粒径为300~500 μm的PN/PS随粒径增大而呈上升趋势,但粒径增大到一定程度时(>500 μm),颗粒污泥向胞外分泌较少的EPS,PN/PS也会随之降低,小颗粒间的聚集作用减弱,亲和力降低,沉降能力下降[26]。掌握这种变化规律有利于调整条件以促进颗粒污泥的聚集并维持颗粒间的稳定性。PN/PS是颗粒结构稳定性的重要调控因素,较高的PN/PS有利于颗粒污泥造粒并增加颗粒污泥强度和相对疏水性,促进anammox颗粒污泥的聚集,故可作为颗粒形成指标。

2.3.   EPS中其他成分对颗粒污泥特性的影响

对 anammox 颗粒污泥的元素组成分析表明,C、H、N、O、S元素的组成分别占总量的44.4%、6.6%、9.0%、35.7%和1.4%[41]。除了主要成分外,颗粒污泥的EPS提取物中还有Na、K、Ca、Mg、Al、Fe、Mn、P、Si、S等元素组成的矿物颗粒。其中,Na、K、Ca、Mg占主要成分,其含量大小为K>Na>Ca>Mg[42]。Anammox颗粒污泥EPS中K、Ca、Mg有离子和非离子2种存在形式,但绝大多是以离子形式存在。K、Ca的金属离子形式占比分别为68.6%、56.2%,Mg的离子形态比例最高,可达94.7%。在非离子存在形态中,K和Mg占比分别为31.4%和5.3%。在金属元素中,Ca的非离子存在形式占比最高,为43.8%。随着粒径的增大,厌氧氨氧化颗粒污泥EPS中PN的含量随之增大,从而可结合更多金属元素,使得金属元素含量增大,Ca2+的含量亦增大,进而中和细菌表面和多糖分子上的负电荷,提升多糖水平并显著缩短颗粒的形成时间,加速颗粒污泥形成并维持其稳定性[28, 43-44]。金属离子在颗粒污泥聚集中发挥的作用不同,如EPS中的Na+会通过压缩双电层作用促进颗粒污泥的聚集,而Na+、K+会通过离子交换作用与Ca2+竞争EPS中的结合位点。因此,Na+与Ca2+和Mg2+含量的变化趋势相反[45]。还有研究者认为,EPS中的Ca、K、Mg、Na、Al、Fe等金属元素会影响厌氧氨氧化颗粒污泥的表面特性[46]。如Ca可诱导形成CaCO3和Ca5OH(PO4)3沉淀,作为anammox颗粒污泥初期的晶核并促成颗粒污泥的形成[43, 47]。而其他金属元素在anammox颗粒污泥的形成及EPS成分结构方面的作用尚有待进一步研究。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3