ZooKeeper: Because Coordinating Distributed Systems is a Zoo

您所在的位置:网站首页 quorum官网 ZooKeeper: Because Coordinating Distributed Systems is a Zoo

ZooKeeper: Because Coordinating Distributed Systems is a Zoo

2023-12-16 15:17| 来源: 网络整理| 查看: 265

ZooKeeper Getting Started Guide Getting Started: Coordinating Distributed Applications with ZooKeeper Pre-requisites Download Standalone Operation Managing ZooKeeper Storage Connecting to ZooKeeper Programming to ZooKeeper Running Replicated ZooKeeper Other Optimizations

Getting Started: Coordinating Distributed Applications with ZooKeeper

This document contains information to get you started quickly with ZooKeeper. It is aimed primarily at developers hoping to try it out, and contains simple installation instructions for a single ZooKeeper server, a few commands to verify that it is running, and a simple programming example. Finally, as a convenience, there are a few sections regarding more complicated installations, for example running replicated deployments, and optimizing the transaction log. However for the complete instructions for commercial deployments, please refer to the ZooKeeper Administrator's Guide.

Pre-requisites

See System Requirements in the Admin guide.

Download

To get a ZooKeeper distribution, download a recent stable release from one of the Apache Download Mirrors.

Standalone Operation

Setting up a ZooKeeper server in standalone mode is straightforward. The server is contained in a single JAR file, so installation consists of creating a configuration.

Once you've downloaded a stable ZooKeeper release unpack it and cd to the root

To start ZooKeeper you need a configuration file. Here is a sample, create it in conf/zoo.cfg:

tickTime=2000 dataDir=/var/lib/zookeeper clientPort=2181

This file can be called anything, but for the sake of this discussion call it conf/zoo.cfg. Change the value of dataDir to specify an existing (empty to start with) directory. Here are the meanings for each of the fields:

tickTime : the basic time unit in milliseconds used by ZooKeeper. It is used to do heartbeats and the minimum session timeout will be twice the tickTime.

dataDir : the location to store the in-memory database snapshots and, unless specified otherwise, the transaction log of updates to the database.

clientPort : the port to listen for client connections

Now that you created the configuration file, you can start ZooKeeper:

bin/zkServer.sh start

ZooKeeper logs messages using logback -- more detail available in the Logging section of the Programmer's Guide. You will see log messages coming to the console (default) and/or a log file depending on the logback configuration.

The steps outlined here run ZooKeeper in standalone mode. There is no replication, so if ZooKeeper process fails, the service will go down. This is fine for most development situations, but to run ZooKeeper in replicated mode, please see Running Replicated ZooKeeper.

Managing ZooKeeper Storage

For long running production systems ZooKeeper storage must be managed externally (dataDir and logs). See the section on maintenance for more details.

Connecting to ZooKeeper $ bin/zkCli.sh -server 127.0.0.1:2181

This lets you perform simple, file-like operations.

Once you have connected, you should see something like:

Connecting to localhost:2181 ... Welcome to ZooKeeper! JLine support is enabled [zkshell: 0]

From the shell, type help to get a listing of commands that can be executed from the client, as in:

[zkshell: 0] help ZooKeeper -server host:port cmd args addauth scheme auth close config [-c] [-w] [-s] connect host:port create [-s] [-e] [-c] [-t ttl] path [data] [acl] delete [-v version] path deleteall path delquota [-n|-b] path get [-s] [-w] path getAcl [-s] path getAllChildrenNumber path getEphemerals path history listquota path ls [-s] [-w] [-R] path printwatches on|off quit reconfig [-s] [-v version] [[-file path] | [-members serverID=host:port1:port2;port3[,...]*]] | [-add serverId=host:port1:port2;port3[,...]]* [-remove serverId[,...]*] redo cmdno removewatches path [-c|-d|-a] [-l] set [-s] [-v version] path data setAcl [-s] [-v version] [-R] path acl setquota -n|-b val path stat [-w] path sync path

From here, you can try a few simple commands to get a feel for this simple command line interface. First, start by issuing the list command, as in ls, yielding:

[zkshell: 8] ls / [zookeeper]

Next, create a new znode by running create /zk_test my_data. This creates a new znode and associates the string "my_data" with the node. You should see:

[zkshell: 9] create /zk_test my_data Created /zk_test

Issue another ls / command to see what the directory looks like:

[zkshell: 11] ls / [zookeeper, zk_test]

Notice that the zk_test directory has now been created.

Next, verify that the data was associated with the znode by running the get command, as in:

[zkshell: 12] get /zk_test my_data cZxid = 5 ctime = Fri Jun 05 13:57:06 PDT 2009 mZxid = 5 mtime = Fri Jun 05 13:57:06 PDT 2009 pZxid = 5 cversion = 0 dataVersion = 0 aclVersion = 0 ephemeralOwner = 0 dataLength = 7 numChildren = 0

We can change the data associated with zk_test by issuing the set command, as in:

[zkshell: 14] set /zk_test junk cZxid = 5 ctime = Fri Jun 05 13:57:06 PDT 2009 mZxid = 6 mtime = Fri Jun 05 14:01:52 PDT 2009 pZxid = 5 cversion = 0 dataVersion = 1 aclVersion = 0 ephemeralOwner = 0 dataLength = 4 numChildren = 0 [zkshell: 15] get /zk_test junk cZxid = 5 ctime = Fri Jun 05 13:57:06 PDT 2009 mZxid = 6 mtime = Fri Jun 05 14:01:52 PDT 2009 pZxid = 5 cversion = 0 dataVersion = 1 aclVersion = 0 ephemeralOwner = 0 dataLength = 4 numChildren = 0

(Notice we did a get after setting the data and it did, indeed, change.

Finally, let's delete the node by issuing:

[zkshell: 16] delete /zk_test [zkshell: 17] ls / [zookeeper] [zkshell: 18]

That's it for now. To explore more, see the Zookeeper CLI.

Programming to ZooKeeper

ZooKeeper has a Java bindings and C bindings. They are functionally equivalent. The C bindings exist in two variants: single threaded and multi-threaded. These differ only in how the messaging loop is done. For more information, see the Programming Examples in the ZooKeeper Programmer's Guide for sample code using the different APIs.

Running Replicated ZooKeeper

Running ZooKeeper in standalone mode is convenient for evaluation, some development, and testing. But in production, you should run ZooKeeper in replicated mode. A replicated group of servers in the same application is called a quorum, and in replicated mode, all servers in the quorum have copies of the same configuration file.

Note

For replicated mode, a minimum of three servers are required, and it is strongly recommended that you have an odd number of servers. If you only have two servers, then you are in a situation where if one of them fails, there are not enough machines to form a majority quorum. Two servers are inherently less stable than a single server, because there are two single points of failure.

The required conf/zoo.cfg file for replicated mode is similar to the one used in standalone mode, but with a few differences. Here is an example:

tickTime=2000 dataDir=/var/lib/zookeeper clientPort=2181 initLimit=5 syncLimit=2 server.1=zoo1:2888:3888 server.2=zoo2:2888:3888 server.3=zoo3:2888:3888

The new entry, initLimit is timeouts ZooKeeper uses to limit the length of time the ZooKeeper servers in quorum have to connect to a leader. The entry syncLimit limits how far out of date a server can be from a leader.

With both of these timeouts, you specify the unit of time using tickTime. In this example, the timeout for initLimit is 5 ticks at 2000 milliseconds a tick, or 10 seconds.

The entries of the form server.X list the servers that make up the ZooKeeper service. When the server starts up, it knows which server it is by looking for the file myid in the data directory. That file has the contains the server number, in ASCII.

Finally, note the two port numbers after each server name: " 2888" and "3888". Peers use the former port to connect to other peers. Such a connection is necessary so that peers can communicate, for example, to agree upon the order of updates. More specifically, a ZooKeeper server uses this port to connect followers to the leader. When a new leader arises, a follower opens a TCP connection to the leader using this port. Because the default leader election also uses TCP, we currently require another port for leader election. This is the second port in the server entry.

Note

If you want to test multiple servers on a single machine, specify the servername as localhost with unique quorum & leader election ports (i.e. 2888:3888, 2889:3889, 2890:3890 in the example above) for each server.X in that server's config file. Of course separate _dataDir_s and distinct _clientPort_s are also necessary (in the above replicated example, running on a single localhost, you would still have three config files).

Please be aware that setting up multiple servers on a single machine will not create any redundancy. If something were to happen which caused the machine to die, all of the zookeeper servers would be offline. Full redundancy requires that each server have its own machine. It must be a completely separate physical server. Multiple virtual machines on the same physical host are still vulnerable to the complete failure of that host.

If you have multiple network interfaces in your ZooKeeper machines, you can also instruct ZooKeeper to bind on all of your interfaces and automatically switch to a healthy interface in case of a network failure. For details, see the Configuration Parameters.

Other Optimizations

There are a couple of other configuration parameters that can greatly increase performance:

To get low latencies on updates it is important to have a dedicated transaction log directory. By default transaction logs are put in the same directory as the data snapshots and myid file. The dataLogDir parameters indicates a different directory to use for the transaction logs.


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3