功率场效应晶体管(MOSFET)原理

您所在的位置:网站首页 p沟道mosfet工作原理 功率场效应晶体管(MOSFET)原理

功率场效应晶体管(MOSFET)原理

2023-07-27 11:48| 来源: 网络整理| 查看: 265

N沟道的MOSFET和P沟道的MOSFET区别就是驱动上面,N沟道的Vgs是正的,P沟道的Vgs是负的。只要Vgs达到了打开的门限值,漏级和源级就可以过电流了。

 

对于MOS管一样,只是电压驱动,Vgs>Vt(启动电压),就可以导通,Vgs越大,最大导通电流越大(满足一定条件)

 

MOS管和三极管区别:

1. MOS管电压驱动;三极管电流驱动

2.MOS输入阻抗高;三极管输入阻抗低

3. MOS管使用场合高频高速,大电流。 例如电源开关,恒流源等

 

N沟道箭头朝内,P沟道箭头朝外

 

 

  功率场效应管(Power MOSFET) 也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。

一、电力场效应管的结构和工作原理

  电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。

  电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。

  电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。电气符号,如图1(b)所示。

  电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果在栅极和源极之间加一正向电压UGS,并且使UGS大于或等于管子的开启电压UT,则管子开通,在漏、源极间流过电流ID。UGS超过UT越大,导电能力越强,漏极电流越大。

二、电力场效应管的静态特性和主要参数

  Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。{{分页}}

1、 静态特性

(1) 输出特性

  输出特性即是漏极的伏安特性。特性曲线,如图2(b)所示。由图所见,输出特性分为截止、饱和与非饱和3个区域。这里饱和、非饱和的概念与GTR不同。饱和是指漏极电流ID不随漏源电压UDS的增加而增加,也就是基本保持不变;非饱和是指地UCS一定时,ID随UDS增加呈线性关系变化。

(2) 转移特性

  转移特性表示漏极电流ID与栅源之间电压UGS的转移特性关系曲线,如图2(a)所示。转移特性可表示出器件的放大能力,并且是与GTR中的电流增益β相似。由于PowerMOSFET是压控器件,因此用跨导这一参数来表示。跨导定义为

                          (1)

  图中UT为开启电压,只有当UGS=UT时才会出现导电沟道,产生漏极电流ID。

2、  主要参数

(1)       漏极击穿电压BUD

  BUD是不使器件击穿的极限参数,它大于漏极电压额定值。BUD随结温的升高而升高,这点正好与GTR和GTO相反。

(2)       漏极额定电压UD

  UD是器件的标称额定值。

(3)       漏极电流ID和IDM

  ID是漏极直流电流的额定参数;IDM是漏极脉冲电流幅值。

(4)       栅极开启电压UT

  UT又称阀值电压,是开通Power MOSFET的栅-源电压,它为转移特性的特性曲线与横轴的交点。施加的栅源电压不能太大,否则将击穿器件。

(5)       跨导gm

  gm是表征Power MOSFET 栅极控制能力的参数。

对于N沟道增强型

UgsUt时候, 处于非饱(可变电阻)区或饱和区

非饱和区:Uds



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3