pytorch DistributedDataParallel 多卡训练结果变差的问题分析

您所在的位置:网站首页 pytorch模型预测精度很差的原因 pytorch DistributedDataParallel 多卡训练结果变差的问题分析

pytorch DistributedDataParallel 多卡训练结果变差的问题分析

2023-12-23 06:08| 来源: 网络整理| 查看: 265

DDP 数据shuffle 的设置

使用DDP要给dataloader传入sampler参数(torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=None, rank=None, shuffle=True, seed=0, drop_last=False)) 。 默认shuffle=True,但按照pytorch DistributedSampler的实现:

def __iter__(self) -> Iterator[T_co]: if self.shuffle: # deterministically shuffle based on epoch and seed g = torch.Generator() g.manual_seed(self.seed + self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore else: indices = list(range(len(self.dataset))) # type: ignore

产生随机indix的种子是和当前的epoch有关,所以需要在训练的时候手动set epoch的值来实现真正的shuffle:

for epoch in range(start_epoch, n_epochs): if is_distributed: sampler.set_epoch(epoch) train(loader) DDP 增大batchsize 效果变差的问题

large batchsize: 理论上的优点:

数据中的噪声影响可能会变小,可能容易接近最优点;

缺点和问题:

降低了梯度的variance;(理论上,对于凸优化问题,低的梯度variance可以得到更好的优化效果; 但是实际上Keskar et al验证了增大batchsize会导致差的泛化能力);对于非凸优化问题,损失函数包含多个局部最优点,小的batchsize有噪声的干扰可能容易跳出局部最优点,而大的batchsize有可能停在局部最优点跳不出来。

解决方法:

增大learning_rate,但是可能出现问题,在训练开始就用很大的learning_rate 可能导致模型不收敛 (https://arxiv.org/abs/1609.04836)使用warming up (https://arxiv.org/abs/1706.02677) warmup

在训练初期就用很大的learning_rate可能会导致训练不收敛的问题,warmup的思想是在训练初期用小的学习率,随着训练慢慢变大学习率,直到base learning_rate,再使用其他decay(CosineAnnealingLR)的方式训练.

# copy from https://github.com/ildoonet/pytorch-gradual-warmup-lr/blob/master/warmup_scheduler/scheduler.py from torch.optim.lr_scheduler import _LRScheduler from torch.optim.lr_scheduler import ReduceLROnPlateau class GradualWarmupScheduler(_LRScheduler): """ Gradually warm-up(increasing) learning rate in optimizer. Proposed in 'Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour'. Args: optimizer (Optimizer): Wrapped optimizer. multiplier: target learning rate = base lr * multiplier if multiplier > 1.0. if multiplier = 1.0, lr starts from 0 and ends up with the base_lr. total_epoch: target learning rate is reached at total_epoch, gradually after_scheduler: after target_epoch, use this scheduler(eg. ReduceLROnPlateau) """ def __init__(self, optimizer, multiplier, total_epoch, after_scheduler=None): self.multiplier = multiplier if self.multiplier self.total_epoch: if self.after_scheduler: if not self.finished: self.after_scheduler.base_lrs = [base_lr * self.multiplier for base_lr in self.base_lrs] self.finished = True return self.after_scheduler.get_last_lr() return [base_lr * self.multiplier for base_lr in self.base_lrs] if self.multiplier == 1.0: return [base_lr * (float(self.last_epoch) / self.total_epoch) for base_lr in self.base_lrs] else: return [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in self.base_lrs] def step_ReduceLROnPlateau(self, metrics, epoch=None): if epoch is None: epoch = self.last_epoch + 1 self.last_epoch = epoch if epoch != 0 else 1 # ReduceLROnPlateau is called at the end of epoch, whereas others are called at beginning if self.last_epoch


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3