数据分析:RT

您所在的位置:网站首页 pcr结果分析图 数据分析:RT

数据分析:RT

2024-07-12 11:49| 来源: 网络整理| 查看: 265

介绍

转录组分析是一种用于研究细胞或组织中所有RNA分子的表达水平的高通量技术。完成转录组分析后,科学家们通常需要通过定量实时聚合酶链式反应(qRT-PCR)来验证二代测序(Next-Generation Sequencing, NGS)结果的可靠性。这是因为qRT-PCR是一种精确的定量方法,可以用来验证特定基因的表达水平。

荧光定量PCR(Quantitative Real-Time PCR)是一种利用荧光信号来实时监测PCR扩增过程的技术。它允许研究者在PCR反应进行时实时检测DNA的累积量,从而实现对基因表达水平的定量分析。

在进行相对定量分析时,常用的方法之一是双标曲线法(也称为标准曲线法或绝对定量法)。这种方法的基本步骤如下:

标准曲线的构建:首先,需要通过一系列已知浓度的标准品(通常是目标基因的克隆DNA)进行PCR扩增,以获得一系列的Ct值(阈值循环数,即PCR扩增过程中荧光信号首次超过阈值的循环次数)。然后,将这些Ct值对数转换后与相应的DNA浓度绘制成图,形成标准曲线。样本的Ct值测定:接下来,对实验样本进行qRT-PCR,记录目标基因的Ct值。相对定量计算:利用标准曲线,根据样本的Ct值计算出样本中目标基因的相对浓度。这通常涉及到将样本的Ct值转换为DNA浓度,然后与标准品的浓度进行比较。数据归一化:由于qRT-PCR可能会受到实验操作和样本制备的影响,因此需要使用一个或多个内参基因(通常是表达水平相对稳定的基因)来归一化数据,以消除这些潜在的变异。结果表达:最终,研究者会以目标基因相对于内参基因的表达水平来表达结果,通常是以2的幂次方来表示倍数变化。

通过这种方法,研究者可以验证NGS结果的准确性,并进一步探索基因表达的调控机制。ΔCt法,2-ΔΔCt法(Livak法),用参照基因的2-ΔΔCt法(Livak法):

在这里插入图片描述

qRT-PCR介绍及计算公式

该部分引用自下方参考链接1

qRT-PCR原理

以基因的cDNA为模板进行PCR扩增,在PCR扩增过程中,通过收集荧光信号,对PCR进程进行实时检测。由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以可以定量。

Ct值

Ct值的含义是:每个反应管内的荧光信号达到设定的域值时所经历的循环数 (cycle)。 qRT-PCR在扩增的时候都会有平台期,在平台期之前,PCR 扩增就是简单的指数增长,也就是 1 变 2,2 变 4,4 变 8 …扩增。数学形式就是 2 的 ct 次方,到了平台期所有基因扩增的数目是一致的,而唯一有区别的则是 ct 值的不同。所以不难推断出 ct 值越小,反应扩增到达平台期所需循环数越少,目的基因起始含量越高。这里可以得到公式:

计算 -ΔΔCt:内参基因分为对照组和处理组内参基因

先计算对照组和处理组的内参基因Ct的均值: M e a n 内参基因 = m e a n ( 对照组或处理组内参基因 ) Mean_{内参基因}=mean(对照组或处理组内参基因) Mean内参基因​=mean(对照组或处理组内参基因)

计算对照组待检测目的基因减去对照组内参基因的平均Ct值: Δ C t 对照组目的基因 i = C t 对照组目的基因 i − C t 对照组内参基因的平均值 ΔCt_{对照组目的基因i} = Ct_{对照组目的基因i} - Ct_{对照组内参基因的平均值} ΔCt对照组目的基因i​=Ct对照组目的基因i​−Ct对照组内参基因的平均值​

计算处理组待检测目的基因减去处理组内参基因的平均Ct值: Δ C t 处理组目的基因 i = C t 处理组目的基因 i − C t 处理组内参基因的平均值 ΔCt_{处理组目的基因i} = Ct_{处理组目的基因i} - Ct_{处理组内参基因的平均值} ΔCt处理组目的基因i​=Ct处理组目的基因i​−Ct处理组内参基因的平均值​

计算基于对照组的-ΔΔCt,处理组待检测目的基因的ΔCt减去对照组待检测基因的ΔCt的平均值: − Δ Δ C t 处理组目的基因 i = Δ C t 处理组目的基因 i − Δ C t 对照组目的基因 i 的平均值 -ΔΔCt_{处理组目的基因i} = ΔCt_{处理组目的基因i} - ΔCt_{对照组目的基因i的平均值} −ΔΔCt处理组目的基因i​=ΔCt处理组目的基因i​−ΔCt对照组目的基因i的平均值​

相对表达量计算,也就是相对于对照组: 2^-ΔΔct: 2 − ( − Δ Δ C t ) 2^{-(-ΔΔCt)} 2−(−ΔΔCt)

条形图或相关性点图可视化结果

R代码 加载R包 knitr::opts_chunk$set(warning = F, message = F) library(dplyr) library(tibble) library(ggplot2) library(xlsx) library(Rmisc) R函数 get_qPCR % dplyr::summarise(Delta_CT_control_mean=mean(CT_delta)) %>% dplyr::rename(Sample_Name_control=Sample_Name) dat_treat % filter(Sample_Name != control_group) %>% # group_by(Sample_Name, Target_Name) %>% # dplyr::summarise(Delta_CT_treat_mean=mean(CT_delta)) %>% dplyr::rename(Sample_Name_treat=Sample_Name) # step3: 计算对照组检测基因的平均Δ值 dat_double_delta % mutate(ylimit=(qPCR+sd)) %>% ungroup() dat_plot_bar_ymax % group_by(Target_Name) %>% summarise_at(vars(ylimit), max) # dat_plot_range % group_by(Sample_Name, Target_Name) %>% # summarise(ymin=min(qPCR), ymax=max(qPCR)) # setting y axis scale y_group


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3