实验3:OpenFlow协议分析实践

您所在的位置:网站首页 mininet中控制器和交换机的连接 实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

2023-08-25 03:09| 来源: 网络整理| 查看: 265

一、实验目的

能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包; 能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。 二、实验环境

下载虚拟机软件Oracle VisualBox; 在虚拟机中安装Ubuntu 20.04 Desktop amd64,并完整安装Mininet; 三、实验要求 (一)基本要求

1.搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据包。

查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程 控制器6633端口(我最高能支持OpenFlow 1.0) ---> 交换机51318端口

交换机51320端口(我最高能支持OpenFlow 1.3)--- 控制器6633端口 于是双方建立连接,并使用OpenFlow 1.0

Features_Request: · 控制器6633端口(我需要你的特征信息) ---> 交换机51318端口

SET_CONFIG 控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机51318端口

Port_Status 当交换机端口发生变化时,告知控制器相应的端口状态。

Features Reply 交换机51318端口(这是我的特征信息,请查收)--- 控制器6633端口

Packet_IN:

Packet_Out:

Flow_mod 分析抓取的flow_mod数据包,控制器通过6633端口向交换机51318端口、交换机51320端口下发流表项,指导数据的转发处理

分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。

交互过程: 交换机或控制器首先发送hello报文,确定openflow通信版本。 交换机或控制器收到hello报文之后,回复一个hello报文,协商版本。 控制器发送feature_request报文,查询交换机具体信息。 交换机收到feature_request报文之后,回复feature_reply,报告自己的详细信息给控制器。 工作过程中控制器会不断发送echo_request给交换机,交换机回复echo_reply消息给控制器,确认连接。

回答:交换机与控制器建立通信时是使用TCP协议还是UDP协议? 通过wireshark抓包工具,可看出使用的是TCP协议(Transmission Control Protocol)

二、进阶要求

将抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。相关数据结构可在openflow安装目录openflow/include/openflow当中的openflow.h头文件中查询到。 1、HELLO

/* Header on all OpenFlow packets. */ struct ofp_header { uint8_t version; /* OFP_VERSION. */ uint8_t type; /* One of the OFPT_ constants. */ uint16_t length; /* Length including this ofp_header. */ uint32_t xid; /* Transaction id associated with this packet. Replies use the same id as was in the request to facilitate pairing. */ };

2.FEATURES_REQUEST

与HELLO的代码段一致

3.SET_CONFIG

/* Switch configuration. */ struct ofp_switch_config { struct ofp_header header; uint16_t flags; /* OFPC_* flags. */ uint16_t miss_send_len; /* Max bytes of new flow that datapath should send to the controller. */ };

4.PORT_STATUS

/* A physical port has changed in the datapath */ struct ofp_port_status { struct ofp_header header; uint8_t reason; /* One of OFPPR_*. */ uint8_t pad[7]; /* Align to 64-bits. */ struct ofp_phy_port desc; };

5.FEATURES_REPLAY

/* Description of a physical port */ struct ofp_phy_port { uint16_t port_no; uint8_t hw_addr[OFP_ETH_ALEN]; char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */ uint32_t config; /* Bitmap of OFPPC_* flags. */ uint32_t state; /* Bitmap of OFPPS_* flags. */ /* Bitmaps of OFPPF_* that describe features. All bits zeroed if * unsupported or unavailable. */ uint32_t curr; /* Current features. */ uint32_t advertised; /* Features being advertised by the port. */ uint32_t supported; /* Features supported by the port. */ uint32_t peer; /* Features advertised by peer. */ }; /* Switch features. */ struct ofp_switch_features { struct ofp_header header; uint64_t datapath_id; /* Datapath unique ID. The lower 48-bits are for a MAC address, while the upper 16-bits are implementer-defined. */ uint32_t n_buffers; /* Max packets buffered at once. */ uint8_t n_tables; /* Number of tables supported by datapath. */ uint8_t pad[3]; /* Align to 64-bits. */ /* Features. */ uint32_t capabilities; /* Bitmap of support "ofp_capabilities". */ uint32_t actions; /* Bitmap of supported "ofp_action_type"s. */ /* Port info.*/ struct ofp_phy_port ports[0]; /* Port definitions. The number of ports is inferred from the length field in the header. */ };

6.PACKET_IN

PACKET_IN有两种情况: 交换机查找流表,发现没有匹配条目,但是本次实验没有抓到这种包

enum ofp_packet_in_reason { OFPR_NO_MATCH, /* No matching flow. */ OFPR_ACTION /* Action explicitly output to controller. */ };

有匹配条目,对应的action是OUTPUT=CONTROLLER,固定收到向控制器发送包

/* Packet received on port (datapath -> controller). */ struct ofp_packet_in { struct ofp_header header; uint32_t buffer_id; /* ID assigned by datapath. */ uint16_t total_len; /* Full length of frame. */ uint16_t in_port; /* Port on which frame was received. */ uint8_t reason; /* Reason packet is being sent (one of OFPR_*) */ uint8_t pad; uint8_t data[0]; /* Ethernet frame, halfway through 32-bit word, so the IP header is 32-bit aligned. The amount of data is inferred from the length field in the header. Because of padding, offsetof(struct ofp_packet_in, data) == sizeof(struct ofp_packet_in) - 2. */ };

7.PACKET_OUT

/* Send packet (controller -> datapath). */ struct ofp_packet_out { struct ofp_header header; uint32_t buffer_id; /* ID assigned by datapath (-1 if none). */ uint16_t in_port; /* Packet's input port (OFPP_NONE if none). */ uint16_t actions_len; /* Size of action array in bytes. */ struct ofp_action_header actions[0]; /* Actions. */ /* uint8_t data[0]; */ /* Packet data. The length is inferred from the length field in the header. (Only meaningful if buffer_id == -1.) */ };

8.FLOW_MOD

/* Flow setup and teardown (controller -> datapath). */ struct ofp_flow_mod { struct ofp_header header; struct ofp_match match; /* Fields to match */ uint64_t cookie; /* Opaque controller-issued identifier. */ /* Flow actions. */ uint16_t command; /* One of OFPFC_*. */ uint16_t idle_timeout; /* Idle time before discarding (seconds). */ uint16_t hard_timeout; /* Max time before discarding (seconds). */ uint16_t priority; /* Priority level of flow entry. */ uint32_t buffer_id; /* Buffered packet to apply to (or -1). Not meaningful for OFPFC_DELETE*. */ uint16_t out_port; /* For OFPFC_DELETE* commands, require matching entries to include this as an output port. A value of OFPP_NONE indicates no restriction. */ uint16_t flags; /* One of OFPFF_*. */ struct ofp_action_header actions[0]; /* The action length is inferred from the length field in the header. */ };

个人总结: 本次实验难度适中。 本次实验目的在于能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。 进阶要求是将抓包结果对照OpenFlow源码,让我们能够了解OpenFlow主要消息类型对应的数据结构定义。 实验过程遇到问题: 问题:打开wireshark后创建拓扑,过滤Openflow数据包,并没有发现Flow_Mod数据包 解决:阅读文档之后,发现Flow_Mod数据包是控制器想交换机下发流表项,指导数据的转发处理,所以在启动wireshark之后,再尝试执行pingall,最后发现了Flow_mod数据包。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3