2022年汽车软件行业产业细分及发展趋势分析 QNX、Linux是当前车机OS内核的首选

您所在的位置:网站首页 linux系统跟安卓系统 2022年汽车软件行业产业细分及发展趋势分析 QNX、Linux是当前车机OS内核的首选

2022年汽车软件行业产业细分及发展趋势分析 QNX、Linux是当前车机OS内核的首选

2024-06-06 17:10| 来源: 网络整理| 查看: 265

1.操作系统OS:QNX+Linux或QNX+Android是当前的主流趋势

在智能网联时代,车机操作系统OS(operatingsystem)按下游应用划分,可以分为车控OS和座舱OS两大类:(1)车控OS:主要负责实现车辆底盘控制、动力系统和自动驾驶,与汽车的行驶决策直接相关;(2)座舱OS:主要为车载信息娱乐服务以及车内人机交互提供控制平台,是汽车实现座舱智能化与多源信息融合的运行环境,不直接参与汽车的行驶决策。对于车控OS而言,可分为嵌入式实时操作系统RTOS和基于POSIX标准的操作系统。(1)嵌入式实时操作系统RTOS:传统车控ECU中主控芯片MCU装载运行的嵌入式OS,面向经典车辆控制领域,如动力系统、底盘系统和车身系统等。要求实时程序必须保证在严格的时间限制内响应,特点包括速度快,吞吐量大,代码精简,代码规模小等;(2)基于POSIX标准的操作系统:主要面向智能驾驶系统,主要满足其高通信和低延时的要求。

汽车电控ECU必须是高稳定性的嵌入式实时性操作系统,主流的嵌入式实时操作系统都兼容OSEK/VDX和ClassicAUTOSAR这两类汽车电子软件标准。嵌入式实时操作系统具有高可靠性、实时性、交互性以及多路性的优势,系统响应极高,通常在毫秒或者微秒级别,满足了高实时性的要求。目前,主流的嵌入式实时操作系统都兼容OSEK/VDX和ClassicAUTOSAR这两类汽车电子软件标准。欧洲在上世纪90年代提出了汽车电子上分布式实时控制系统的开放式系统标准OSEK/VDX。但随着技术、产品、客户需求等的升级,OSEK标准逐渐不能支持新的硬件平台。2003年,宝马、博世、大陆、戴姆勒、通用、福特、标志雪铁龙、丰田、大众9家企业作为核心成员,成立AUTOSAR组织,致力于建立一个标准化平台,独立于硬件的分层软件架构,制定各种车辆应用接口规范和集成标准,AUTOSAR是基于OSEK/VDX发展出来的,但涉及的范围更广。

AUTOSAR主要包括ClassicPlatformAUTOSAR(CP)和AdaptivePlatformAUTOSAR(AP)两个平台规范:CPAUTOSAR是基于OSEK/VDX标准的,广泛应用于传统嵌入式ECU中,如发动机控制器、电机控制器、整车控制器、BMS控制器等;APAUTOSAR基于POSIX,主要应用于自动驾驶等需求高计算能力、高带宽通信、分布式部署的下一代汽车应用领域中。

狭义OS仅包含内核(如QNX、Linux),广义OS从下至上包括从BSP、操作系统内核、中间件及库组件等硬件和上层应用之间的所有程序。QNX、Linux是目前常见内核OS,VxWorks也有一定应用。随着WinCE停止更新逐渐退出,OS内核的格局较为稳定,主要玩家为QNX(Blackberry)、Linux(开源基金会)、VxWorks(风河)。其中Linux属于非实时操作系统,而QNX和VxWorks属于实时操作系统,WinCE是微软开发的嵌入式操作系统,正在逐步退出汽车操作系统市场。(1)BlackberryQNX:QNX是遵从POSIX规范的类UNIX实时操作系统,是全球第一款达到ASILD级别的车载操作系统,优点是稳定性和安全性非常高,QNX依靠其微内核架构实现性能和可靠性的平衡,主要特点有内核小、代码少以及故障影响小,驱动等错误不会导致整个系统都崩溃,通用、沃尔沃、奥迪、上汽等均用QNX作为自动驾驶OS。但缺点是QNX作为非开源系统,兼容性较差,开发难度大,在娱乐系统开发中应用不多,主要是开放性不够,应用生态缺乏。(2)Linux(Android):Linux是基于POSIX和UNIX的开源操作系统,可适配更多的应用场景,具有很强的定制开发灵活度,主要用于支持更多应用和接口的信息娱乐系统场景。Android是谷歌基于Linux内核开发的开源操作系统,主要应用在车载信息娱乐系统、导航领域,在国内车载信息娱乐系统领域占据主流地位。由于其完全开源,基于Linux开发的难度也极大,而且开发周期比较长,这就限制了车机系统进入门槛。(3)VxWorks:VxWorks由WindRiver设计开发的嵌入式实时操作系统,以其良好的可靠性和卓越的实时性被广泛地应用在通信、军事、航空、航天等领域,VxWorks由400多个相对独立的目标模块组成,但与Linux相比,VxWorks需要收取高昂的授权费,开发定制成本较高,这限制了其市场占有率的增长。

QNX、Linux是当前车机OS内核的首选。根据赛迪顾问的统计,QNX由于其典型的实时性、低延时、高稳定等特征,2021年QNX市占率达到43%,是当前市占份额最高的车机OS,已应用在包括宝马、奥迪、奔驰等超过40个品牌,全球使用了QNX的汽车超1.75亿辆;Linux(含Android)Linux版本丰富,经过改造Linux内核也将具备实时性功能,21年市占率35%;WinCE当前市占率8%,呈现快速下滑态势,未来可能将逐步在市场消失;VxWorks同时具备实时性及开源特点,但其业务重点一直在复杂工业领域,对于汽车产业投入较少,售价及维修费用极其昂贵,目前仅在部分高端品牌车型上有所尝试。

随着智能座舱和智能驾驶的进步,OEM厂商更加关注车机OS。然而,无论是传统OEM巨头或是造车新势力,从零开始开发操作系统都绝非易事,根据对基础系统的改造程度不同,一般可以分为三类:(1)定制型车机OS:在基础OS的基础上进行深度开发和定制(包括系统内核修改),与Tier1和主机厂一起实现座舱系统平台或自动驾驶系统平台。例如百度车载OS、大众VW.OS、特斯拉Version;(2)ROM型车机OS:基于Android或Linux定制开发,无需更改系统内核。海外主机厂多选择基于Linux开发ROM型车机OS,国内自主品牌则主要选择应用生态更好的Android。例如奔驰、宝马、蔚来、小鹏等整车厂的车机系统都属于ROM型车机OS;(3)超级汽车APP:并非完整的车机OS,而是手机映射系统,是指集地图、音乐、语音、社交等功能于一体的多功能APP,满足车主需求。例如百度Carlife、华为HiCar、苹果CarPlay、谷歌AndroidAuto等。

2.板级支持包BSP:主板硬件与操作系统之间的桥梁

BSP(BoardSupportPackage,板级支持包)是构建嵌入式操作系统所需的引导程序、内核、根文件系统和工具链提供的完整的软件资源包。对于具体的硬件平台,与硬件相关的代码都被封装在BSP中,由BSP向上提供虚拟的硬件平台,BSP与操作系统通过定义好的接口进行交互。BSP介于主板硬件和操作系统之间的一层,也属于操作系统的一部分,主要目的是为了支持操作系统,使之能够更好的运行于硬件主板,为OS和硬件设备的交互操作搭建了一个桥梁。由于所属的中介位置,BSP的功能分为两部分,一方面为OS及上层应用程序提供一个与硬件无关的软件平台,另一方面OS可以通过BSP来完成对指定硬件的配置和管理。不同的操作系统对应于不同定义形式的BSP。例如,VxWorks的BSP和Linux的BSP相对于某一CPU来说尽管实现的功能一样,但写法和接口定义是完全不同的,所以写BSP一定要按照该系统BSP的定义形式来写,这样才能与上层OS保持正确的接口,良好的支持上层OS。

3.Hypervisor:虚拟化平台,跨平台应用的重要途径

提供平台虚拟化的层称为Hypervisor。虚拟化是通过某种方式隐藏底层物理硬件的过程,从而实现多个操作系统可以透明地使用和共享硬件。Hypervisor是实现跨平台应用、提高硬件利用率的重要途径。车载领域的Hypervisor负责管理并虚拟化异构硬件资源,以提供给运行在Hypervisor之上的多个操作系统内核。Hypervisor支持异构硬件单元(包括控制单元、计算单元、AI单元)的隔离,在同一个异构硬件平台上支持不同的操作系统内核,从而支持不同种类的应用。Hypervisor虚拟机管理助力多系统融合。Hypervisor(虚拟机)是运行在物理服务器和操作系统之间的中间软件层,可用于同步支持Android、Linux、QNX多系统。根据ISO26262标准规定,仪表盘的关键数据和代码与娱乐信息系统属于不同等级,主流市场中,QNX或Linux系统用来驱动仪表系统,信息娱乐系统则以Android为主,目前技术只能将两个系统分开装置在各自芯片中。然而,虚拟机可以同时运作符合车规安全标准的QNX与Linux,因此虚拟机管理的概念被引入智能座舱操作系统。随着液晶仪表以及其他安全功能的普及,供应商不需要装载多个硬件来实现不同的功能需求,只需要在车载主芯片上进行虚拟化的软件配置,形成多个虚拟机,在每个虚拟机上运行相应的软件即可满足需求。引入虚拟机管理最重要的意义在于虚拟机可以提供一个同时运行两个及以上独立操作系统的环境,比如在智能座舱中同时运行Android(座舱OS)和QNX(车控OS),为智能网联汽车的应用提供高性价比且符合安全要求的平台。

中科创达、武汉光庭信息、南京诚迈科技是黑莓VAI项目的系统集成商类的合作伙伴。2017年3月,黑莓公司宣布正式成立VAI(Value-AddedIntegrator)项目,拓展嵌入式软件市场,成为黑莓公司VAI项目合作伙伴,将基于黑莓的嵌入式技术提供集成服务、安全关键型解决方案,包括黑莓QNXNeutrino实时操作系统、QNXMomentics工具套件、QNX管理程序、应用程序和媒体QNXSDK、QNX无线架构、QNX认证操作系统、QNX医用操作系统、Certicom工具包、Certicom管理的公钥基础设施以及Certicom资产管理系统。目前,黑莓VAI项目的中国区系统集成商类的合作伙伴主要包括中科创达、武汉光庭信息、南京诚迈科技等。

长期看,智能座舱与自动驾驶两大系统终将走向融合。由于目前车控域与座舱域两者的发展目标平行,同时,由于QNX、Linux与Andriod三大系统各有优劣,因此,通过虚拟机管理多个独立系统是当下实现“多快好省”的智能网联汽车的发展路径。但从长期看,想要真正实现高级自动驾驶的必要前提就是车控与座舱的融合,即智能座舱与自动驾驶系统的容二虎,这样将会从整体层面给未来留下更系统的升级空间。当然两大系统的融合也面临着系统叠加导致的片负载加重,对计算性能形成挑战。

4.中间件层:助力软硬件解耦分离,提升应用层开发效率

中间件隔离应用层与底层硬件,助力软硬件解耦。中间件位于操作系统、网络和数据库之上,应用软件的下层,作用是为处于自己上层的应用软件提供运行与开发的环境,帮助用户灵活、高效地开发和集成复杂的应用软件,实现软硬件的解耦分离。车企致力于定义更统一的中间件通信和服务,以降低开发成本和系统复杂度,操作软件(OS)和中间件是促进软硬件分离的底层软件组件。即使车企选择自研操作系统,但同时也会依赖于供应商提供标准中间件产品,尤其基础软件平台的架构极其重要,可大幅提升应用层软件的开发效率。所有中间件方案中,最著名的是CPAUTOSAR的RTE。AUTOSAR的两个平台AUTOSARClassic和AUTOSARAdaptive为不同的车辆用例提供了分层的软件体系结构方法,AUTOSAR以中间件RTE(RuntimeEnvironment)为界,隔离上层的应用层(ApplicationLayer)与下层的基础软件(BasicSoftware)。RTE使得硬件层完全独立于应用层,OEM厂商可以专注于开发特定的、有竞争力的应用软件,同时使得厂商不关心的基础软件层被标准化。

分布式通信(DataDistributionService,DDS)通过实现低延迟数据连接、极高的可靠性和可扩展的灵活架构,使数据成为未来移动数字平台的中心。DDS提供的用于以数据为中心的连接的中间件协议、连接框架和API标准。它集成了分布式系统的组件,提供了低延迟的数据连接、极高的可靠性和可扩展的体系结构,满足业务和任务关键型应用程序的需求。AUTOSARAdaptive平台2017年推出,2018年便集成了DDS标准,将DDS与AUTOSAR结合使用,不仅可以保证和扩展AUTOSAR系统内部互操作性的功能,而且还可以将其开放给来自不同生态系统等行业的外部系统。

国产AUTOSAR供应商不断崛起。AUTOSAR标准发展了十多年,已经形成非常复杂的技术体系。各工具厂商开发了相应的支撑软件,以助力主机厂加速实现AUTOSAR的落地。目前全球知名的AUTOSAR解决方案厂商包括ETAS(博世)、EB(大陆)、MentorGraphics(西门子)、WindRiver、Vector、KPIT等,国内主要是东软睿驰、经纬恒润等。

5.功能软件:自动驾驶的核心共性功能模块

功能软件主要包含自动驾驶的核心共性功能模块。核心共性功能模块包括自动驾驶通用框架、网联、云控等,结合系统软件,共同构成完整的自动驾驶操作系统,支撑自动驾驶技术实现。

(1)智能驾驶通用模型:智能驾驶通用模型是对智能驾驶中智能认知、智能决策和智能控制等过程的模型化抽象。对应于自动驾驶中环境感知、决策与规划、控制与执行三大部分,通用模型也可以分为环境模型、规划模型和控制模型等。自动驾驶会产生安全和产品化共性需求,通过设计和实现通用框架模块来满足这些共性需求,是保障自动驾驶系统实时、安全、可扩展和可定制的基础。

(2)功能软件通用框架:功能软件通用框架是承载智能驾驶通用模型的基础,是功能软件的核心和驱动部分,可以分为数据流框架和基础服务两部分。数据流框架向下封装不同的智能驾驶系统软件和中间件服务,向智能驾驶通用模型中的算法提供与底层系统软件解耦的算法框架。数据流框架的主要作用是对智能驾驶通用模型中的算法进行抽象、部署、驱动,解决跨域、跨平台部署和计算的问题。基础服务是功能软件层共用的基本服务,包括可靠冗余组件、信息安全基本服务以及网联云控服务等。其中,可靠冗余组件是保证自动驾驶安全可控的关键,也是车控操作系统取得操作系统全栈功能安全认证的重要保障;信息安全基础服务为车端数据定义了数据类型和安全等级,为车端功能和应用定义的数据处理功能定义;网联云控服务可提供操作系统的安全冗余信息、超视距信息和通用模型的信息。

(3)数据抽象:数据抽象可以为上层各模型提供数据源。通过对传感器、执行器、自车状态、地图以及来自云端的接口等数据进行标准化处理,数据抽象的过程可以为智能驾驶通用模型提供各种不同的数据源进而建立异构硬件数据抽象,达到功能和应用开发与底层硬件的解耦和依赖。一般来说,数据抽象可以分为分类、聚集与概括三种类型。

6.工具链:提升平台软硬件研发效率的重要途径

车载计算平台开发的软硬件环境以及全栈工具链成为提升开发效率的重要途径之一。高阶自动驾驶技术不断迭代,车载计算平台的研发更需要对产品进行整体持续的迭代,而不只是针对单一的模块,或者其中几个功能。全栈式工具链主要包括开发工具、集成工具、仿真工具、调试工具、测试工具等。

7.应用软件:OEM品牌智能化产品力的直接体现

应用软件作为系统软件与功能软件之上独立开发的软件程序,更是OEM品牌智能化产品力的直接体现。应用软件主要包括面向自动驾驶算法、地图导航类、车载语音、OTA与云服务、信息娱乐等。

(1)自动驾驶算法。自动驾驶算法是决定车辆智能化水平的关键所在。自动驾驶算法覆盖感知、决策、执行三个层次。感知类算法,SLAM(Simultaneouslocalizationandmapping,同步定位与建图)算法是一个重要分支,SLAM算法根据点云数据传感器的不同又可分为视觉SLAM算法、激光SLAM算法以及多传感器融合算法;决策类算法包括自动驾驶规划算法、自动驾驶决策算法;执行类算法主要为自动驾驶控制算法。

(2)高精度地图。高精度地图,即HDMap(HighDefinitionMap)或HADMap(HighlyAutomatedDrivingMap),是指绝对精度和相对精度均在1米以内的高精度、高新鲜度、高丰富度的电子地图。其信息包括道路类型、曲率、车道线位置等道路信息,路边基础设施、障碍物、交通标志等环境对象信息,以及交通流量、红绿灯状态信息等实时动态信息。

百度、四维图新、高德占据主要份额,国内市场呈现“三足鼎立”。由于地图导航类业务的资质限制,国内高精度地图主要玩家大多是本土公司,根据IDC统计,2020年国内高精度地图行业市场份额前五名公司为百度、四维图新、高德、易图通以及Here,其中CR3超过65%,呈现“三足鼎立”的局面。预计2025年国内市场规模达32亿美元。按照3亿辆汽车保有量及单车百元年服务费测算,国内市场规模将从2020年的6.4亿美元增长到2025年的32亿美元,预计2025年全球市场份额将达到35.6%,CAGR达到38.0%,高于同期全球增速。

(3)车载语音。车载语音是车内最简洁、最人性化、最安全的交互方式,也是未来最主要的车内交互方式。随着AI和硬件性能的增强,语音交互是未来汽车的绝对主流。语音交互主要是依靠NLP算法对语音进行解析,使得自动驾驶系统更容易理解驾驶员的指令。2020年智能座舱中自然语音识别搭载率大约为67%,预计2024年可达84%。目前,国内乘用车车载语音装配率超过64.8%,大大提高了行车安全性以及便捷性。科大讯飞与Cerence领先中国车载语音市场,互联网企业及车厂纷纷入局。竞争格局方面,根据高工汽车统计数据显示,Cerence市占率为39.5%,排名第一,Cerence作为全球车载语音的龙头,客户主要以合资车型为主;科大讯飞是中国车载语音市场的领头羊,市占率超过38%,排名第二;互联网企业方面,BAT也已分别入局车载语音,其中百度发展更为迅速,市场份额7.2%。腾讯目前主打车载应用“腾讯随行”和“腾讯爱趣听”等生态服务上车,排名第五;此外,大众问问凭借其主机厂的背景优势入局,凭借大众、奥迪等多款前装车型市场占有率快速提升。

(本文仅供参考,不代表我们的任何投资建议。如需使用相关信息,请参阅报告原文。)



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3