Java多种方式解决生产者消费者问题(十分详细)

您所在的位置:网站首页 java多线程容易出现的问题 Java多种方式解决生产者消费者问题(十分详细)

Java多种方式解决生产者消费者问题(十分详细)

2024-06-29 08:02| 来源: 网络整理| 查看: 265

一、问题描述

生产者消费者问题(Producer-consumer problem),也称有限缓冲问题(Bounded-buffer problem),是一个多线程同步问题的经典案例。生产者生成一定量的数据放到缓冲区中,然后重复此过程;与此同时,消费者也在缓冲区消耗这些数据。生产者和消费者之间必须保持同步,要保证生产者不会在缓冲区满时放入数据,消费者也不会在缓冲区空时消耗数据。不够完善的解决方法容易出现死锁的情况,此时进程都在等待唤醒。

示意图: 生产者消费者

二、解决方法 思路

采用某种机制保护生产者和消费者之间的同步。有较高的效率,并且易于实现,代码的可控制性较好,属于常用的模式。

在生产者和消费者之间建立一个管道。管道缓冲区不易控制,被传输数据对象不易于封装等,实用性不强。

解决问题的核心

   保证同一资源被多个线程并发访问时的完整性。常用的同步方法是采用信号或加锁机制,保证资源在任意时刻至多被一个线程访问。

Java能实现的几种方法

wait() / notify()方法

await() / signal()方法

BlockingQueue阻塞队列方法

信号量

管道

三、代码实现 1. wait() / notify()方法

当缓冲区已满时,生产者线程停止执行,放弃锁,使自己处于等状态,让其他线程执行; 当缓冲区已空时,消费者线程停止执行,放弃锁,使自己处于等状态,让其他线程执行。

当生产者向缓冲区放入一个产品时,向其他等待的线程发出可执行的通知,同时放弃锁,使自己处于等待状态; 当消费者从缓冲区取出一个产品时,向其他等待的线程发出可执行的通知,同时放弃锁,使自己处于等待状态。

仓库Storage.java

import java.util.LinkedList; public class Storage { // 仓库容量 private final int MAX_SIZE = 10; // 仓库存储的载体 private LinkedList list = new LinkedList(); public void produce() { synchronized (list) { while (list.size() + 1 > MAX_SIZE) { System.out.println("【生产者" + Thread.currentThread().getName() + "】仓库已满"); try { list.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } list.add(new Object()); System.out.println("【生产者" + Thread.currentThread().getName() + "】生产一个产品,现库存" + list.size()); list.notifyAll(); } } public void consume() { synchronized (list) { while (list.size() == 0) { System.out.println("【消费者" + Thread.currentThread().getName() + "】仓库为空"); try { list.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } list.remove(); System.out.println("【消费者" + Thread.currentThread().getName() + "】消费一个产品,现库存" + list.size()); list.notifyAll(); } } }

生产者

public class Producer implements Runnable{ private Storage storage; public Producer(){} public Producer(Storage storage){ this.storage = storage; } @Override public void run(){ while(true){ try{ Thread.sleep(1000); storage.produce(); }catch (InterruptedException e){ e.printStackTrace(); } } } }

消费者

public class Consumer implements Runnable{ private Storage storage; public Consumer(){} public Consumer(Storage storage){ this.storage = storage; } @Override public void run(){ while(true){ try{ Thread.sleep(3000); storage.consume(); }catch (InterruptedException e){ e.printStackTrace(); } } } }

主函数

public class Main { public static void main(String[] args) { Storage storage = new Storage(); Thread p1 = new Thread(new Producer(storage)); Thread p2 = new Thread(new Producer(storage)); Thread p3 = new Thread(new Producer(storage)); Thread c1 = new Thread(new Consumer(storage)); Thread c2 = new Thread(new Consumer(storage)); Thread c3 = new Thread(new Consumer(storage)); p1.start(); p2.start(); p3.start(); c1.start(); c2.start(); c3.start(); } }

运行结果

【生产者p1】生产一个产品,现库存1 【生产者p2】生产一个产品,现库存2 【生产者p3】生产一个产品,现库存3 【生产者p1】生产一个产品,现库存4 【生产者p2】生产一个产品,现库存5 【生产者p3】生产一个产品,现库存6 【生产者p1】生产一个产品,现库存7 【生产者p2】生产一个产品,现库存8 【消费者c1】消费一个产品,现库存7 【生产者p3】生产一个产品,现库存8 【消费者c2】消费一个产品,现库存7 【消费者c3】消费一个产品,现库存6 【生产者p1】生产一个产品,现库存7 【生产者p2】生产一个产品,现库存8 【生产者p3】生产一个产品,现库存9 【生产者p1】生产一个产品,现库存10 【生产者p2】仓库已满 【生产者p3】仓库已满 【生产者p1】仓库已满 【消费者c1】消费一个产品,现库存9 【生产者p1】生产一个产品,现库存10 【生产者p3】仓库已满 。。。。。。以下省略

一个生产者线程运行produce方法,睡眠1s;一个消费者运行一次consume方法,睡眠3s。此次实验过程中,有3个生产者和3个消费者,也就是我们说的多对多的情况。仓库的容量为10,可以看出消费的速度明显慢于生产的速度,符合设定。

注意:

notifyAll()方法可使所有正在等待队列中等待同一共享资源的“全部”线程从等待状态退出,进入可运行状态。此时,优先级最高的哪个线程最先执行,但也有可能是随机执行的,这要取决于JVM虚拟机的实现。即最终也只有一个线程能被运行,上述线程优先级都相同,每次运行的线程都不确定是哪个,后来给线程设置优先级后也跟预期不一样,还是要看JVM的具体实现吧。

2. await() / signal()方法

在JDK5中,用ReentrantLock和Condition可以实现等待/通知模型,具有更大的灵活性。通过在Lock对象上调用newCondition()方法,将条件变量和一个锁对象进行绑定,进而控制并发程序访问竞争资源的安全。

在这里只需改动Storage类

import java.util.LinkedList; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class Storage { // 仓库最大存储量 private final int MAX_SIZE = 10; // 仓库存储的载体 private LinkedList list = new LinkedList(); // 锁 private final Lock lock = new ReentrantLock(); // 仓库满的条件变量 private final Condition full = lock.newCondition(); // 仓库空的条件变量 private final Condition empty = lock.newCondition(); public void produce() { // 获得锁 lock.lock(); while (list.size() + 1 > MAX_SIZE) { System.out.println("【生产者" + Thread.currentThread().getName() + "】仓库已满"); try { full.await(); } catch (InterruptedException e) { e.printStackTrace(); } } list.add(new Object()); System.out.println("【生产者" + Thread.currentThread().getName() + "】生产一个产品,现库存" + list.size()); empty.signalAll(); lock.unlock(); } public void consume() { // 获得锁 lock.lock(); while (list.size() == 0) { System.out.println("【消费者" + Thread.currentThread().getName() + "】仓库为空"); try { empty.await(); } catch (InterruptedException e) { e.printStackTrace(); } } list.remove(); System.out.println("【消费者" + Thread.currentThread().getName() + "】消费一个产品,现库存" + list.size()); full.signalAll(); lock.unlock(); } }

运行结果与wait()/notify()类似

3. BlockingQueue阻塞队列方法

BlockingQueue是JDK5.0的新增内容,它是一个已经在内部实现了同步的队列,实现方式采用的是我们第2种await() / signal()方法。它可以在生成对象时指定容量大小,用于阻塞操作的是put()和take()方法。

put()方法:类似于我们上面的生产者线程,容量达到最大时,自动阻塞。 take()方法:类似于我们上面的消费者线程,容量为0时,自动阻塞。

import java.util.concurrent.LinkedBlockingQueue; public class Storage { // 仓库存储的载体 private LinkedBlockingQueue list = new LinkedBlockingQueue(10); public void produce() { try{ list.put(new Object()); System.out.println("【生产者" + Thread.currentThread().getName() + "】生产一个产品,现库存" + list.size()); } catch (InterruptedException e){ e.printStackTrace(); } } public void consume() { try{ list.take(); System.out.println("【消费者" + Thread.currentThread().getName() + "】消费了一个产品,现库存" + list.size()); } catch (InterruptedException e){ e.printStackTrace(); } } }

可能会出现put()或take()和System.out.println()输出不匹配的情况,是由于它们之间没有同步造成的。BlockingQueue可以放心使用,这可不是它的问题,只是在它和别的对象之间的同步有问题。

4. 信号量

Semaphore是一种基于计数的信号量。它可以设定一个阈值,基于此,多个线程竞争获取许可信号,做完自己的申请后归还,超过阈值后,线程申请许可信号将会被阻塞。Semaphore可以用来构建一些对象池,资源池之类的,比如数据库连接池,我们也可以创建计数为1的Semaphore,将其作为一种类似互斥锁的机制,这也叫二元信号量,表示两种互斥状态。计数为0的Semaphore是可以release的,然后就可以acquire(即一开始使线程阻塞从而完成其他执行。)。

import java.util.LinkedList; import java.util.concurrent.Semaphore; public class Storage { // 仓库存储的载体 private LinkedList list = new LinkedList(); // 仓库的最大容量 final Semaphore notFull = new Semaphore(10); // 将线程挂起,等待其他来触发 final Semaphore notEmpty = new Semaphore(0); // 互斥锁 final Semaphore mutex = new Semaphore(1); public void produce() { try { notFull.acquire(); mutex.acquire(); list.add(new Object()); System.out.println("【生产者" + Thread.currentThread().getName() + "】生产一个产品,现库存" + list.size()); } catch (Exception e) { e.printStackTrace(); } finally { mutex.release(); notEmpty.release(); } } public void consume() { try { notEmpty.acquire(); mutex.acquire(); list.remove(); System.out.println("【消费者" + Thread.currentThread().getName() + "】消费一个产品,现库存" + list.size()); } catch (Exception e) { e.printStackTrace(); } finally { mutex.release(); notFull.release(); } } } 5. 管道

一种特殊的流,用于不同线程间直接传送数据,一个线程发送数据到输出管道,另一个线程从输入管道中读数据。

inputStream.connect(outputStream)或outputStream.connect(inputStream)作用是使两个Stream之间产生通信链接,这样才可以将数据进行输出与输入。

这种方式只适用于两个线程之间通信,不适合多个线程之间通信。

1. PipedInputStream / PipedOutputStream (操作字节流)

Producer

import java.io.IOException; import java.io.PipedOutputStream; public class Producer implements Runnable { private PipedOutputStream pipedOutputStream; public Producer() { pipedOutputStream = new PipedOutputStream(); } public PipedOutputStream getPipedOutputStream() { return pipedOutputStream; } @Override public void run() { try { for (int i = 1; i


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3