【软件通信协议】1. 详细解析TCP/IP通信协议

您所在的位置:网站首页 ip协议的传输方式是什么样的 【软件通信协议】1. 详细解析TCP/IP通信协议

【软件通信协议】1. 详细解析TCP/IP通信协议

2024-07-17 00:33| 来源: 网络整理| 查看: 265

1. TCP/IP协议简介

        Transmission Control Protocol/Internet Protocol的简写,中译名为传输控制协议/因特网互联协议,又名网络通讯协议,是Internet最基本的协议、Internet国际互联网络的基础,由网络层的IP协议和传输层的TCP协议组成。TCP/IP 定义了电子设备如何连入因特网,以及数据如何在它们之间传输的标准。协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的协议来完成自己的需求。通俗而言:TCP负责发现传输的问题,一有问题就发出信号,要求重新传输,直到所有数据安全正确地传输到目的地。而IP是给因特网的每一台联网设备规定一个地址(互动百科的定义)。

2. TCP/IP与ISO/OSI分层比较

 

TCP/IP协议族按照层次由上到下,层层包装。

应用层:         向用户提供一组常用的应用程序,比如电子邮件、文件传输访问、远程登录等。远程登录TELNET使用TELNET协议提供在网络其它主机上注册的接口。TELNET会话提供了基于字符的虚拟终端。文件传输访问FTP使用FTP协议来提供网络内机器间的文件拷贝功能。

        应用层做为 TCP/IP 协议的最高层级,对于我们移动开发来说,是接触最多的。

运行在TCP协议上的协议:

HTTP(Hypertext Transfer Protocol,超文本传输协议),主要用于普通浏览。HTTPS(Hypertext Transfer Protocol over Secure Socket Layer, or HTTP over SSL,安全超文本传输协议),HTTP协议的安全版本。FTP(File Transfer Protocol,文件传输协议),由名知义,用于文件传输。POP3(Post Office Protocol, version 3,邮局协议),收邮件用。SMTP(Simple Mail Transfer Protocol,简单邮件传输协议),用来发送电子邮件。TELNET(Teletype over the Network,网络电传),通过一个终端(terminal)登陆到网络。SSH(Secure Shell,用于替代安全性差的TELNET),用于加密安全登陆用。

运行在UDP协议上的协议:

BOOTP(Boot Protocol,启动协议),应用于无盘设备。NTP(Network Time Protocol,网络时间协议),用于网络同步。DHCP(Dynamic Host Configuration Protocol,动态主机配置协议),动态配置IP地址。

其他:

DNS(Domain Name Service,域名服务),用于完成地址查找,邮件转发等工作(运行在TCP和UDP协议上)。ECHO(Echo Protocol,回绕协议),用于查错及测量应答时间(运行在TCP和UDP协议上)。SNMP(Simple Network Management Protocol,简单网络管理协议),用于网络信息的收集和网络管理。ARP(Address Resolution Protocol,地址解析协议),用于动态解析以太网硬件的地址。

传输层:         提供应用程序间的通信。其功能包括:一、格式化信息流;二、提供可靠传输。为实现后者,传输层协议规定接收端必须发回确认,并且假如分组丢失,必须重新发送。

网络层 :

        负责相邻计算机之间的通信。其功能包括三方面。         a、处理来自传输层的分组发送请求,收到请求后,将分组装入IP数据报,填充报头,选择去往信宿机的路径,然后将数据报发往适当的网络接口。

        b、处理输入数据报:首先检查其合法性,然后进行寻径--假如该数据报已到达信宿机,则去掉报头,将剩下部分交给适当的传输协议;假如该数据报尚未到达信宿,则转发该数据报。

        c、处理路径、流控、拥塞等问题。

        那么网络层是如何做物理地址与逻辑地址之间的转换呢?所以就涉及到如下的ip、地址解析协议ARP、子网的定义。

2.1 IP(下面的介绍都是基于 IPv4 进行的)

        TCP/IP 协议网络上的每一个网络适配器都有一个唯一的 IP 地址.

        IP 地址是一个 32 位的地址,这个地址通常分成 4 端,每 8 个二进制为一段,但是为了方便阅读,通常会将每段都转换为十进制来显示,比如大家非常熟悉的 192.168.0.1

IP 地址分为两个部分:

网络 ID主机 ID

但是具体哪部分属于网络 ID,哪些属于主机 ID 并没有规定.

因为有些网络是需要很多主机的,这样的话代表主机 ID 的部分就要更多,但是有些网络需要的主机很少,这样主机 ID 的部分就应该少一些.

绝大部分 IP 地址属于以下几类

        A 类地址:IP 地址的前 8 位代表网络 ID ,后 24 位代表主机 ID。

        B 类地址:IP 地址的前 16 位代表网络 ID ,后 16 位代表主机 ID。

        C 类地址:IP 地址的前 24 位代表网络 ID ,后 8 位代表主机 ID。

这里能够很明显的看出 A 类地址能够提供出的网络 ID 较少,但是每个网络可以拥有非常多的主机。但是我们怎么才能看出一个 IP 地址到底是哪类地址呢?

如果 32 位的 IP 地址以 0 开头,那么它就是一个 A 类地址。

如果 32 位的 IP 地址以 10 开头,那么它就是一个 B 类地址。

如果 32 位的 IP 地址以 110 开头,那么它就是一个 C 类地址。

那么转化为十进制(四段)的话,我们就能以第一段中的十进制数来区分 IP 地址到底是哪类地址了。

 

注意:

十进制第一段大于 223 的属于 D 类和 E 类地址,这两类比较特殊也不常见,这里就不做详解介绍了。每一类都有一些排除地址,这些地址并不属于该类,他们是在一些特殊情况使用地址(后面会介绍)除了这样的方式来划分网络,我们还可以把每个网络划分为更小的网络块,称之为子网(后面会介绍)

        全是 0 的主机 ID 代表网络本身,比如说 IP 地址为 130.100.0.0 指的是网络 ID 为130.100 的 B 类地址。

        全是 1 的主机 ID 代表广播,是用于向该网络中的全部主机方法消息的。 IP 地址为 130.100.255.255 就是网络 ID 为 130.100 网络的广播地址(二进制 IP 地址中全是 1 ,转换为十进制就是 255 )

        以十进制 127 开头的地址都是环回地址。目的地址是环回地址的消息,其实是由本地发送和接收的。主要是用于测试 TCP/IP 软件是否正常工作。我们用 ping 功能的时候,一般用的环回地址是 127.0.0.1

2.2 地址解析协议ARP

        在网络通信过程中, 源主机的应用程序只知道目的应用程序的IP地址, 并不知道对方主机的硬件地址, 所以在数据发送之前, 需要先找到目标及其的硬件地址, 这就是ARP协议所起的作用了。

        每次在建立连接之前, 会在本地网络广播发送目的IP地址, 所有机器都会受到该请求, 目的机器发现该请求中的IP地址跟自己一样, 就把自己的硬件地址返回回去, 否则忽略该请求。

        一般来说, 每台机器都维护的有一个ARP缓存表, 存储了近期的IP地址和硬件地址的映射关系, 可以用arp -a命令来查看缓存表中内容。

        如果目的机器和本机器不在同一个网段之内的话, 会将数据发送给网关来处理, 一般网关就是路由器, 此时网关会进行IP路由, 将ARP请求发送到目的网络地址, 然后再依次将应答返回给该发起请求的机器。

2.3 子网

        前面提到了 IP 地址的分类,但是对于 A 类和 B 类地址来说,每个网络下的主机数量太多了,那么网络的传输会变得很低效,并且很不灵活。比如说 IP地址为 100.0.0.0 的 A 类地址,这个网络下的主机数量超过了 1600 万台。

        所以子网掩码的出现就是为了解决这样的问题。

        我们先回顾一下之前如何区分主机 IP 和网络 IP 的。

        以 A 类地址 99.10.10.10 为例,前 8 位是网络 IP ,后 24 位是主机 IP 。(如下图)

        子网掩码也是一个 32 为的二进制数,也可以用四个十进制数来分段,他的每一位对应着 IP 地址的相应位置,数值为 1 时代表的是非主机位,数值为 0 时代表是主机位。

        由表格可以很清晰的看出,网络 IP 仍是由之前的分类来决定到底是多少位,主机 IP 则是由子网掩码值为 0 的位数来决定,剩下的则是子网 IP

网络接口层:         这是TCP/IP软件的最低层,负责接收IP数据报并通过网络发送之,或者从网络上接收物理帧,抽出IP数据报,交给IP层,主要是指物理层次的一些接口,比如电缆等。

注:第二章转载自https://blog.csdn.net/yulyu/article/details/69062288

3. TCP/IP报文格式

IP协议数据包格式如下:

其中字段的含义:

TOS, 一共有8位, 其中3位用来表示该数据包的优先级, 目前已经不用; 还有4位表示可选的服务类型(最小延迟, 最大吞吐, 最大可靠性, 最低成本), 还有一位总是0;标志位: 用来对每个IP包的分片关系进行标识, 用于分片和重新组装数据包;TTL(Time To Live), 是指一个数据包在网络上的最多经过多少次转发, 如果超过该数字, 就丢弃该包8位协议, 上层可选协议为: TCP, UDP, ICMP, IGMP

TCP报文格式如下:

16位源端口号:16位的源端口中包含初始化通信的端口。源端口和源IP地址的作用是标识报文的返回地址。

16位目的端口号:16位的目的端口域定义传输的目的。这个端口指明报文接收计算机上的应用程序地址接口。

32位序号:32位的序列号由接收端计算机使用,重新分段的报文成最初形式。当SYN出现,序列码实际上是初始序列码(Initial Sequence Number,ISN),而第一个数据字节是ISN+1。这个序列号(序列码)可用来补偿传输中的不一致。

32位确认序号:32位的序列号由接收端计算机使用,重组分段的报文成最初形式。如果设置了ACK控制位,这个值表示一个准备接收的包的序列码。

4位首部长度:4位包括TCP头大小,指示何处数据开始。

保留(6位):6位值域,这些位必须是0。为了将来定义新的用途而保留。

标志:6位标志域。表示为:紧急标志、有意义的应答标志、推、重置连接标志、同步序列号标志、完成发送数据标志。按照顺序排列是:URG、ACK、PSH、RST、SYN、FIN。

16位窗口大小:用来表示想收到的每个TCP数据段的大小。TCP的流量控制由连接的每一端通过声明的窗口大小来提供。窗口大小为字节数,起始于确认序号字段指明的值,这个值是接收端正期望接收的字节。窗口大小是一个16字节字段,因而窗口大小最大为65535字节。

16位校验和:16位TCP头。源机器基于数据内容计算一个数值,收信息机要与源机器数值 结果完全一样,从而证明数据的有效性。检验和覆盖了整个的TCP报文段:这是一个强制性的字段,一定是由发送端计算和存储,并由接收端进行验证的。

16位紧急指针:指向后面是优先数据的字节,在URG标志设置了时才有效。如果URG标志没有被设置,紧急域作为填充。加快处理标示为紧急的数据段。

选项:长度不定,但长度必须为1个字节。如果没有选项就表示这个1字节的域等于0。

数据:该TCP协议包负载的数据。

在上述字段中,6位标志域的各个选项功能如下。

URG:紧急标志。紧急标志为"1"表明该位有效。ACK:确认标志。表明确认编号栏有效。大多数情况下该标志位是置位的。TCP报头内的确认编号栏内包含的确认编号(w+1)为下一个预期的序列编号,同时提示远端系统已经成功接收所有数据。PSH:推标志。该标志置位时,接收端不将该数据进行队列处理,而是尽可能快地将数据转由应用处理。在处理Telnet或rlogin等交互模式的连接时,该标志总是置位的。RST:复位标志。用于复位相应的TCP连接。SYN:同步标志。表明同步序列编号栏有效。该标志仅在三次握手建立TCP连接时有效。它提示TCP连接的服务端检查序列编号,该序列编号为TCP连接初始端(一般是客户端)的初始序列编号。在这里,可以把TCP序列编号看作是一个范围从0到4,294,967,295的32位计数器。通过TCP连接交换的数据中每一个字节都经过序列编号。在TCP报头中的序列编号栏包括了TCP分段中第一个字节的序列编号。FIN:结束标志。 4. TCP三次握手

        所谓三次握手(Three-Way Handshake)即建立TCP连接,就是指建立一个TCP连接时,需要客户端和服务端总共发送3个包以确认连接的建立。在socket编程中,这一过程由客户端执行connect来触发,整个流程如下图所示:

(1)第一次握手:Client将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给Server,Client进入SYN_SENT状态,等待Server确认。

(2)第二次握手:Server收到数据包后由标志位SYN=1知道Client请求建立连接,Server将标志位SYN和ACK都置为1,ack=J+1,随机产生一个值seq=K,并将该数据包发送给Client以确认连接请求,Server进入SYN_RCVD状态。

(3)第三次握手:Client收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给Server,Server检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。

简单来说,就是

        1、建立连接时,客户端发送SYN包(SYN=i)到服务器,并进入到SYN-SEND状态,等待服务器确认

        2、服务器收到SYN包,必须确认客户的SYN(ack=i+1),同时自己也发送一个SYN包(SYN=k),即SYN+ACK包,此时服务器进入SYN-RECV状态

        3、客户端收到服务器的SYN+ACK包,向服务器发送确认报ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手,客户端与服务器开始传送数据。

SYN攻击:

        在三次握手过程中,Server发送SYN-ACK之后,收到Client的ACK之前的TCP连接称为半连接(half-open connect),此时Server处于SYN_RCVD状态,当收到ACK后,Server转入ESTABLISHED状态。SYN攻击就是Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server回复确认包,并等待Client的确认,由于源地址是不存在的,因此,Server需要不断重发直至超时,这些伪造的SYN包将产时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网络堵塞甚至系统瘫痪。SYN攻击时一种典型的DDOS攻击,检测SYN攻击的方式非常简单,即当Server上有大量半连接状态且源IP地址是随机的,则可以断定遭到SYN攻击了,使用如下命令可以让之现形:

#netstat -nap | grep SYN_RECV

5. TCP四次挥手

        所谓四次挥手(Four-Way Wavehand)即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。在socket编程中,这一过程由客户端或服务端任一方执行close来触发,整个流程如下图所示:

        由于TCP连接时全双工的,因此,每个方向都必须要单独进行关闭,这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的连接,收到一个FIN只是意味着这一方向上没有数据流动了,即不会再收到数据了,但是在这个TCP连接上仍然能够发送数据,直到这一方向也发送了FIN。首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭,上图描述的即是如此。

        (1)第一次挥手:Client发送一个FIN,用来关闭Client到Server的数据传送,Client进入FIN_WAIT_1状态。

        (2)第二次挥手:Server收到FIN后,发送一个ACK给Client,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),Server进入CLOSE_WAIT状态。

        (3)第三次挥手:Server发送一个FIN,用来关闭Server到Client的数据传送,Server进入LAST_ACK状态。

        (4)第四次挥手:Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,Server进入CLOSED状态,完成四次挥手。

为什么建立连接是三次握手,而关闭连接却是四次挥手呢?

        这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。而关闭连接时,当收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,己方也未必全部数据都发送给对方了,所以己方可以立即close,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送。

为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

原因有二:         一、保证TCP协议的全双工连接能够可靠关闭         二、保证这次连接的重复数据段从网络中消失

        先说第一点,如果Client直接CLOSED了,那么由于IP协议的不可靠性或者是其它网络原因,导致Server没有收到Client最后回复的ACK。那么Server就会在超时之后继续发送FIN,此时由于Client已经CLOSED了,就找不到与重发的FIN对应的连接,最后Server就会收到RST而不是ACK,Server就会以为是连接错误把问题报告给高层。这样的情况虽然不会造成数据丢失,但是却导致TCP协议不符合可靠连接的要求。所以,Client不是直接进入CLOSED,而是要保持TIME_WAIT,当再次收到FIN的时候,能够保证对方收到ACK,最后正确的关闭连接。

        再说第二点,如果Client直接CLOSED,然后又再向Server发起一个新连接,我们不能保证这个新连接与刚关闭的连接的端口号是不同的。也就是说有可能新连接和老连接的端口号是相同的。一般来说不会发生什么问题,但是还是有特殊情况出现:假设新连接和已经关闭的老连接端口号是一样的,如果前一次连接的某些数据仍然滞留在网络中,这些延迟数据在建立新连接之后才到达Server,由于新连接和老连接的端口号是一样的,又因为TCP协议判断不同连接的依据是socket pair,于是,TCP协议就认为那个延迟的数据是属于新连接的,这样就和真正的新连接的数据包发生混淆了。所以TCP连接还要在TIME_WAIT状态等待2倍MSL,这样可以保证本次连接的所有数据都从网络中消失。

注:以上转载自:https://www.jianshu.com/p/ef892323e68f

6. TCP LinuxC编程CS模型

客户端步骤:

        1、创建套接字

        2、向服务器发送连接请求(connect)

        3、通信(send/recv)

        4、关闭套接字

服务器端步骤:

        1、创建用于监听的套接字(socket)

        2、将套接字绑定到本地地址和端口上(bind)

        3、将套接字设为监听模式(listen)

        4、等待客户请求(accept),此处要不断的调用accept

        5、通信(send/receive),完成后返回4

        6、关闭套接字(closesocket)

 

基于TCP的CS模型Linux C代码实现请移步github:

https://github.com/ZhenhuaWei/Linux-C-Demo.git

 


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3