组蛋白乙酰转移酶GCN5参与调控代谢性疾病的分子机制

您所在的位置:网站首页 gnat翻译 组蛋白乙酰转移酶GCN5参与调控代谢性疾病的分子机制

组蛋白乙酰转移酶GCN5参与调控代谢性疾病的分子机制

2023-08-15 10:06| 来源: 网络整理| 查看: 265

 

[1] Heindel JJ, Blumberg B, Cave M, et al. Metabolism disrupting chemicals and metabolic disorders[J]. Reprod Toxicol, 2017, 68: 3-33

[2] Kreitz J, Schönfeld C, Seibert M, et al. Metabolic plasticity of acute myeloid leukemia [J]. Cells, 2019, 8(8).pii: E805

[3] Crispo F, Condelli V, Lepore S, et al. Metabolic dysregulations and epigenetics: a bidirectional interplay that drives tumor progression [J]. Cells, 2019, 8(8).pii: E798

[4] Bruzzone MJ, Grünberg S, Kubik S, et al. Distinct patterns of histone acetyltransferase and mediator deployment at yeast protein-coding genes [J]. Genes Dev, 2018, 32(17-18): 1252-1265

[5] Conacci-Sorrell M, Ngouenet C, Eisenman RN. Myc-nick: a cytoplasmic cleavage product of Myc that promotes alpha-tubulin acetylation and cell differentiation [J]. Cell, 2010, 142(3): 480-493

[6] Chang P, Fan X, Chen J. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans [J]. Fungal Genet Biol, 2015, 81: 132-141

[7] Xu W, Edmondson DG, Evrard YA, et al. Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development [J]. Nat Genet, 2000, 26(2): 229-232

[8] Sen R, Pezoa SA, Carpio Shull L, et al. Kat2a and Kat2b acetyltransferase activity regulates craniofacial cartilage and bone differentiation in Zebrafish and mice [J]. J Dev Biol, 2018, 6(4).pii: E27

[9] Ghosh TK, Aparicio-Sanchez JJ, Buxton S, et al. Acetylation of TBX5 by KAT2B and KAT2A regulates heart and limb development [J]. J Mol Cell Cardiol, 2018, 114: 185-198

[10] Bondy-Chorney E, Denoncourt A, Sai Y, et al. Nonhistone targets of KAT2A and KAT2B implicated in cancer biology [J]. Biochem Cell Biol, 2019, 97(1): 30-45

[11] Liang M, Zhang S, Dong L, et al. Label-free quantitative proteomics of lysine acetylome identifies substrates of Gcn5 in Magnaporthe oryzae autophagy and epigenetic regulation [J]. mSystems, 2018, 3(6). pii: e00270-18

[12] Wang Y, Guo YR, Liu K,et al. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase [J]. Nature, 2017, 552(7684): 273-277

[13] Sharabi K, Lin H, Tavares CDJ, et al. Selective chemical inhibition of PGC-1α gluconeogenic activity ameliorates type 2 diabetes [J]. Cell, 2017, 169(1): 148-160.e15

[14] Guo T, Li B, Gu C, et al. GCN-5/PGC-1α signaling is activated and associated with metabolism in cyclin E1-driven ovarian cancer [J]. Aging (Albany NY), 2019, 11(14): 4890-4899

[15] Sakai M, Tujimura-Hayakawa T, Yagi T, et al. The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch [J]. Nat Commun, 2016, 7: 13147

[16] Tavares CD, Sharabi K, Dominy JE, et al. The methionine transamination pathway controls hepatic glucose metabolism through regulation of the GCN5 acetyltransferase and the PGC-1α transcriptional coactivator [J]. J Biol Chem, 2016, 291(20): 10635-10645

[17] Dominy JE Jr, Lee Y, Jedrychowski MP, et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis [J]. Mol Cell, 2012, 48(6): 900-913

[18] Lee Y, Dominy JE, Choi YJ, et al. Cycling D1-Cdk4 controls glucose metabolism independently of cell cycle progression [J]. Nature, 2014, 510(7506): 547-551

[19] Zheng Z, Chen H, Li J, et al. Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin [J]. Diabetes, 2012, 61(1): 217-228

[20] Hu N, Ren J, Zhang Y. Mitochondrial aldehyde dehydrogenase obliterates insulin resistance-induced cardiac dysfunction through deacetylation of PGC-1α [J]. Oncotarget, 2016, 7(47): 76398-76414

[21] Jeong K, Kwon H, Lee J, et al. Insulin-response epigenetic activation of Egr-1 and JunB genes at the nuclear periphery by A-type lamin-associated pY19-Caveolin-2 in the inner nuclear membrane [J]. Nucleic Acids Res, 2015, 43(6): 3114-3127

[22] Vecellio M, Spallotta F, Nanni S, et al. The histone acetylase activator pentadecylidenemalonate 1b rescues proliferation and differentiation in the human cardiac mesenchymal cells of type 2 diabetic patients [J]. Diabetes, 2014, 63(6): 2132-2147

[23] Sonkar R, Powell CA, Choudhury M. Benzyl butyl phthalate induces epigenetic stress to enhance adipogenesis in mesenchymal stem cells [J]. Mol Cell Endocrinol, 2016, 431: 109-122

[24] Jin Q, Wang C, Kuang X, et al. Gcn5 and PCAF regulate PPARγ and Prdm16 expression to facilitate brown adipogenesis [J]. Mol Cell Biol, 2014, 34(19): 3746-3753

[25] Dent JR, Martins VF, Svensson K, et al. Muscle-specific knockout of general control of amino acid synthesis 5 (GCN5) does not enhance basal or endurance exercise-induced mitochondrial adaptation [J]. Mol Metab, 2017, 6(12): 1574-1584

[26] Qi S, He L, Zhang Q, et al. Cross-pathway control gene CPC1/GCN4 coordinates with histone acetyltransferase GCN5 to regulate catalase-3 expression under oxidative stress in Neurospora crassa [J]. Free Radic Biol Med, 2018, 117: 218-227

[27] Zhao C, Li Y, Qiu W, et al. C5a induces A549 cell proliferation of non-small cell lung cancer via GDF15 gene activation mediated by GCN5-dependent KLF5 acetylation [J]. Oncogene, 2018, 37(35): 4821-4837

[28] Chen C, Li C, Wang Y, et al. Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis [J]. Nat Plants, 2017, 3(10): 814-824

[29] Zhang X, Li B, Rezaeian AH, et al. H3 ubiquitination by NEDD4 regulates H3 acetylation and tumorigenesis [J]. Nat Commun, 2017, 8: 14799

[30] Wang Y, Guo YR, Liu K, et al. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase [J]. Nature, 2017, 552(7684): 273-277

[31] Montanari A, Leo M, De Luca V, et al. Gcn5 histone acetyltransferase is present in the mitoplasts [J]. Biol Open, 2019, 8(2).pii: bio041244

[32] Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha [J]. EMBO J, 2007, 26(7): 1913-1923

[33] Hu M, Zeng H, Chen S, et al. SRC-3 is involved in maintaining hematopoietic stem cell quiescence by regulation of mitochondrial metabolism in mice [J]. Blood, 2018, 132(9): 911-923

[34] Xiong S, Salazar G, San Martin A, et al. PGC-1alpha Serine 570 Phosphorylation and GCN5-mediated acetylation by angiotensin II drive catalase down-regulation and vascular hypertrophy [J]. J Biol Chem, 2010, 285(4): 2474-2487

[35] Kahata K, Hayashi M, Asaka M, et al. Regulation of transforming growth factor-beta and bone morphogenetic protein signalling by transcriptional coactivator GCN5[J]. Genes Cells, 2004, 9(2): 143-151

[36] Li B, Sun J, Dong Z, et al. GCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment [J]. Sci Rep, 2016, 6: 26542

[37] Jing H, Liao L, Su X, et al. Declining histone acetyltransferase GCN5 represses BMSC-mediated angiogenesis during osteoporosis [J]. FASEB J, 2017, 31(10): 4422-4433

[38] Jing H, Su X, Gao B, et al. Epigenetic inhibition of Wnt pathway suppresses osteogenic differentiation of BMSCs during osteoporosis [J]. Cell Death Dis, 2018, 9(2): 176

[39] Mao X, Gluck N, Li D, et al. GCN5 is a required cofactor for a ubiquitin ligase that targets NF-kappaB/RelA [J]. Genes Dev, 2009, 23(7): 849-861

[40] Zhang P, Liu Y, Jin C. Histone acetyltransferase GCN5 regulates osteogenic differentiation of mesenchymal stem cells by inhibiting NF-κB [J]. J Bone Miner Res, 2016, 31(2): 391-402

[41] Xiong H, Han J, Wang J, et al. Discovery of 1,8-acridinedione derivatives as novel GCN5 inhibitors via high throughput screening [J]. Eur J Med Chem, 2018, 151: 740-751

[42] Bassi ZI, Fillmore MC, Miah AH, et al. Modulating PCAF/GCN5 immune cell function through a PROTAC approach [J]. ACS Chem Biol, 2018, 13(10): 2862-2867



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3