C++ malloc/free/new/delete详解(内存管理)

您所在的位置:网站首页 free函数的功能 C++ malloc/free/new/delete详解(内存管理)

C++ malloc/free/new/delete详解(内存管理)

2024-01-04 19:40| 来源: 网络整理| 查看: 265

这里写目录标题 malloc/free典型用法内存分配实现过程brk和mmap申请小于128k的内存申请大于128k的内存释放内存brk和mmap的区别 new/delete典型用法内存分配实现过程 new/delete和malloc/free的区别malloc对于给每个进程分配的内存是不是有大小限制delete [] 怎么知道要销毁多少内存空间malloc的内存可以用delete释放吗?new[]分配的空间可以用free()释放吗?new[]和delete配对使用会发生什么malloc出来20字节内存,为什么free不需要传入20呢,不会产生内存泄漏吗?限制对象只能建立在堆上限制对象只能建立在栈上

malloc/free 典型用法

malloc()负责动态配置内存,大小由size决定,分配成功时返回值为任意类型指针,指向一段可用内存(虚拟内存)的起始地址。分配失败时为NULL。

void * malloc(size_t size)

free()负责释放动态申请的内存空间,调用free( )后ptr所指向的内存空间被收回,如果ptr指向未知地方或者指向的空间已被收回,则会发生不可预知的错误,如果ptr为NULL,free不会有任何作用。

void free(void *ptr) 内存分配

malloc函数动态申请的内存空间是在堆里(而一般局部变量存于栈里),并且该段内存不会被初始化,如果不采用手动free()加以释放,则该段内存一直存在,直到程序退出才被系统,所以为了合理使用内存,在不适用该段内存时,应该调用free()。另外,如果在一个函数里面使用过malloc,最好要配对使用free,否则容易造成内存泄露。

实现过程 brk和mmap

从操作系统角度来看,malloc的实现有两种方式,分别由两个系统调用完成:brk和mmap(不考虑共享内存)。

申请小于128k的内存时,使用brk分配内存,将数据段.data的最高地址指针_edata向高地址移动,即增加堆的有效区域来申请新的内存空间。申请大于128k的内存时,使用mmap分配内存,mmap是在进程的文件映射区找一块空闲存储空间,128K限制可由M_MMAP_THRESHOLD选项进行修改。

这两种方式分配的都是虚拟内存,没有分配物理内存。在第一次访问已分配的虚拟地址空间的时候,发生缺页中断,操作系统负责分配物理内存,然后建立虚拟内存和物理内存之间的映射关系。

申请小于128k的内存

申请小于128k的内存时,使用brk分配内存,将_edata往高地址推(只分配虚拟空间,不对应物理内存(因此没有初始化),第一次读/写数据时,引起内核缺页中断,内核才分配对应的物理内存,然后虚拟地址空间建立映射关系),如下图: 在这里插入图片描述

进程启动的时候,其(虚拟)内存空间的初始布局如图1。其中,mmap内存映射文件是在堆和栈的中间(例如libc-2.2.93.so,其它数据文件等),为了简单起见,省略了内存映射文件。_edata指针(glibc里面定义)指向数据段的最高地址。进程调用A=malloc(30K)以后,内存空间如图2。malloc函数会调用brk系统调用,将_edata指针往高地址推30K,就完成虚拟内存分配。然而,_edata+30K只是完成虚拟地址的分配,A这块内存现在还是没有物理页与之对应的,等到进程第一次读写A这块内存的时候,发生缺页中断,这个时候,内核才分配A这块内存对应的物理页。也就是说,如果用malloc分配了A这块内容,然后从来不访问它,那么,A对应的物理页是不会被分配的。进程调用B=malloc(40K)以后,内存空间如图3。 申请大于128k的内存

申请大于128k的内存时,使用mmap分配内存,在堆和栈之间找一块空闲内存分配,如下图: 在这里插入图片描述

进程调用C=malloc(200K)以后,内存空间如图4。默认情况下,malloc函数分配内存,如果请求内存大于128K(可由M_MMAP_THRESHOLD选项调节),那就不是去推_edata指针了,而是利用mmap系统调用,从堆和栈的中间分配一块虚拟内存。这样子做主要是因为brk分配的内存需要等到高地址内存释放以后才能释放(例如,在B释放之前,A是不可能释放的,这就是内存碎片产生的原因,什么时候紧缩看下面),而mmap分配的内存可以单独释放。进程调用D=malloc(100K)以后,内存空间如图5。 释放内存

在这里插入图片描述

进程调用free(C)以后,C对应的虚拟内存和物理内存一起释放,如图6。进程调用free(B)以后,如图7所示。B对应的虚拟内存和物理内存都没有释放,因为只有一个_edata指针,如果往回推,那么D这块内存怎么办呢?当然,B这块内存,是可以重用的,如果这个时候再来一个40K的请求,那么malloc很可能就把B这块内存返回回去了。进程调用free(D)以后,如图8所示。B和D连接起来,变成一块140K的空闲内存。

默认情况下:当最高地址空间的空闲内存超过128K(可由M_TRIM_THRESHOLD选项调节)时,执行内存紧缩操作(trim)。在上一个步骤free的时候,发现最高地址空闲内存超过128K,于是内存紧缩,变成图9所示。

brk和mmap的区别 malloc 通过 brk() 方式申请的内存,free 释放内存的时候,并不会把内存归还给操作系统,而是缓存在 malloc 的内存池中,待下次使用;同时brk分配的内存需要等到高地址内存释放以后才能释放,这也是内存碎片产生的原因malloc 通过 mmap() 方式申请的内存,free 释放内存的时候,会把内存归还给操作系统,内存得到真正的释放。除此之外,mmap分配的内存可以单独释放。 new/delete 典型用法

new和delete是C++中的运算符,不是库函数,不需要库的支持,同时,他们是封装好的重载运算符,并且可以再次进行重载。

new是动态分配内存的运算符,自动计算需要分配的空间,在C++中,它属于重载运算符,可以对多种数据类型形式进行分配内存空间,比如int型、char型、结构体型和类等的动态申请的内存分配,分配类的内存空间时,同时调用类的构造函数,对内存空间进行初始化,即完成类的初始化工作。new运算符的使用示例:

new int //开辟一个存放整数的存储空间,返回一个指向该存储空间的地址 new int(100) //同上,并指定该整数的初值为100 new char[100] //开辟一个存放字符数组(100个元素)的空间,返回首地址 new int[4][5]//开辟一个存放二维数组的空间,返回首元素的地址 float *p=new float(3.14157) //开辟一个存放单精度的空间,并指定该数的初值为3.14157,将返回的该空间的地址赋给指针变量p

注意:用new分配数组空间不能指定初值,若无法正常分配,则new会返回一个空指针NULL或者抛出bad_alloc异常。

delete是撤销动态申请的内存运算符。delete与new通常配对使用,与new的功能相反,可以对多种数据类型形式的内存进行撤销,包括类,撤销类的内存空间时,它要调用其析构函数,完成相应的清理工作,收回相应的内存资源。delete运算符的使用示例:

//注意,指针p存于栈中,p所指向的内存空间却是在堆中。 int *p = new int; delete p; char *p = new char; delete p; //注意,new申请数组,delete删除的形式需要加括号“[ ]”,表示对数组空间的操作,总之,申请形式如何,释放的形式就如何。 Obj * p = new Obj[100]; delete [ ]p; 内存分配

new申请的内存也是存于堆中,所以在不需要使用时,需要delete手动收回。

实现过程

在new一个对象的时候,首先会调用operator new() 为对象分配内存空间,然后调用对象的构造函数。

delete会调用对象的析构函数,然后调用free回收内存。

new/delete和malloc/free的区别 new从自由存储区上分配内存,malloc从堆上分配内存。自由存储区是C++基于new操作符的一个抽象概念,凡是通过new操作符进行内存申请,该内存即为自由存储区。而堆是操作系统中的术语,是操作系统所维护的一块特殊内存,用于程序的内存动态分配。自由存储区是否能够是堆取决于operator new 的实现细节。自由存储区不仅可以是堆,还可以是静态存储区,这都看operator new在哪里为对象分配内存。new 可以调用对象的构造函数,对应的 delete 调用相应的析构函数;malloc 仅仅分配内存,free 仅仅回收内存,并不执行构造和析构函数。在new一个对象的时候,底层首先调用 operator new() 函数为对象分配内存空间,然后调用对象的构造函数。delete会调用对象的析构函数,然后调用free回收内存。使用new操作符申请内存分配时无须指定内存块的大小,编译器会根据类型信息自行计算;使用malloc则需要显式地指出所需内存的尺寸。new、delete 返回的是某种数据类型指针;malloc、free 返回的是 void 指针。new、delete 是操作符;malloc、free 是函数。malloc分配失败返回NULL;new要求在内存分配失败时要求返回NULL或抛出std::bad_alloc异常。 malloc对于给每个进程分配的内存是不是有大小限制

Windows下32位程序如果单纯看地址空间能有4G左右的内存可用,不过实际上系统会把其中2G的地址留给内核使用,32位Linux是用户3G+内核1G。所以你的程序最大能用2G(Windows)或者3G(Linux)的内存。除去其他开销,你能用malloc申请到的内存只有1.9G或者2.9G左右。

delete [] 怎么知道要销毁多少内存空间

new的执行过程:先给定需要的内存大小,调用operator new,在那里面获得制定大小的内存并返回;然后才以刚才返回的内存为基础调用类的构造函数。如果使用的是new[]来生成对象数组,需要多申请sizeof(int)(即4个字节)的空间来存储对象个数,以确定析构的次数。

delete的执行过程:如果需要删除的是对象数组,首先要根据数组最开头的int数值来调用若干次析构函数;然后才释放存储空间。

这告诉我们,可以认为new就是malloc的封装。并且也解释了为什么new[]分配的空间用free()释放会出错(因为new[]分配空间返回的地址并不是它里面malloc分配空间的首地址,系统预留了sizeof(int)个字节)。

malloc的内存可以用delete释放吗?

可以,但是一般不这么用。malloc/free是c语言中的函数,c++为了兼容c保留下来这一对函数。简单来说,new 可以理解为,先执行malloc来申请内存,后调用构造函数来初始化对象;delete是先执行析构函数,后使用free来释放内存。

new[]分配的空间可以用free()释放吗?

不可以,因为new[]分配空间返回的地址并不是它里面malloc分配空间的首地址,系统预留了sizeof(int)个字节用来确定调用析构函数的次数。

new[]和delete配对使用会发生什么 如果数组中的元素类型为内置类型,调用delete时不需要析构函数,所以也就不需要多4个字节来存放掉调用析构函数的次数,所以不会报错。如果数组中的元素类型为自定义类型,则delete只会析构数组中的第一个对象。 #include #include using namespace std; int main() { int *pint = new int(5); delete[] pint; int *pinta = new int[4]; delete pinta; cout


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3