考研高数

您所在的位置:网站首页 ex的反常积分收敛 考研高数

考研高数

2024-03-01 00:16| 来源: 网络整理| 查看: 265

对于反常积分敛散性的判别,我们需要掌握两个重要结论,并能熟练地进行无穷小、无穷大比阶。1

注意到:

∫ 1 x p d x = 1 ( p − 1 ) x p − 1 = 1 p − 1 ⋅ e ( 1 − p ) ln ⁡ x \int \frac{1}{x^p} \mathrm{d}x = \frac{1}{(p-1)x^{p-1}} = \frac{1}{p-1} \cdot e^{(1-p)\ln x} ∫xp1​dx=(p−1)xp−11​=p−11​⋅e(1−p)lnx

有:

(1)无穷区间的反常积分 ∫ 1 ∞ ( 1 / x p ) d x \int_1^\infty (1/{x^p}) \mathrm{d}x ∫1∞​(1/xp)dx:在 p > 1 p \gt 1 p>1 时收敛,在 p ⩽ 1 p \leqslant 1 p⩽1 时发散。

ln ⁡ x 在 ( 1 , ∞ ) \ln x 在 \left(1, \infty \right) lnx在(1,∞) 上恒正, ( 1 − p ) < 0 \left( 1 - p \right) \lt 0 (1−p) 0 \left( 1 - p \right) \gt 0 (1−p)>0 时, lim ⁡ x → ∞ e ( 1 − p ) ln ⁡ x = ∞ \lim_{x \to \infty} e^{(1-p)\ln x} = \infty limx→∞​e(1−p)lnx=∞, 故发散。

(2)无界函数的反常积分 ∫ 0 1 ( 1 / x p ) d x \int_0^1 (1/{x^p}) \mathrm{d}x ∫01​(1/xp)dx:在 p < 1 p \lt 1 p 0 \left( 1 - p \right) \gt 0 (1−p)>0 时, lim ⁡ x → 0 e ( 1 − p ) ln ⁡ x = e − ∞ = 0 \lim_{x \to 0} e^{(1-p)\ln x} = e^{-\infty} = 0 limx→0​e(1−p)lnx=e−∞=0, 故收敛; p = 1 p = 1 p=1 时, 1 p − 1 \frac{1}{p-1} p−11​ 不存在,故发散; ( 1 − p ) < 0 \left( 1 - p \right) \lt 0 (1−p)



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3