超级干货

您所在的位置:网站首页 dac工作原理图 超级干货

超级干货

2023-08-10 02:32| 来源: 网络整理| 查看: 265

DAC模拟输出考虑因素

DAC的模拟输出可能是电压或电流。两者情况下,可能都需要知道输出阻抗。如果对电压 输出进行了缓冲,则输出阻抗将很低。而电流输出和未缓冲的电压输出将存在较高阻抗, 并还可能具有电抗性分量以及纯粹的电阻性分量。在有些DAC架构的输出结构中,输出阻 抗与DAC上的数字码字成函数关系,这点应会在数据手册中明确注明。

理论上,电流输出应当连接到电阻为零欧姆的地电位。在实际应用中,该输出将采用非零 阻抗和电压。“顺从性”标题下只是定义了该输出可耐受的电压偏差大小,端接电流输出 DAC时应当注意到此项技术规格。

适合视频、RF或IF应用的大多数高速DAC具有电流输出,旨在直接驱动源和负载端接电 缆。例如,20-mA电流输出DAC可以在25-Ω负载(相当于50-Ω源和负载端接电缆的直流电 阻)上产生0.5 V的电压。大多数情况下,单电源高速CMOS DAC具有至少+1 V的正输出顺 从电压和数百毫伏的负输出顺从电压。

很多情况下(如TxDACRegistered系列),同时支持真正电流输出和互补电流输出。差分输出可以直 接驱动变压器的初级绕组,并且通过将输出绕组的一侧接地,可以在次级绕组处产生单端 信号。与简单地从DAC电流输出之一直接获取输出信号并将其它输出接地相比,这种方法 通常可以在高频率下获得更佳失真性能。

现代电流输出DAC通常具有数个差分输出,以便实现高共模抑制并减少偶数阶失真产物。 常见的满量程输出电压范围为2 mA至30 mA。

在许多应用中,需要将DAC的差分输出转换成适合驱动同轴线路的单端信号。只要无需低 频响应,那么通过RF变压器便可轻松地实现这点。图2所示为这种方法的典型示例。DAC 的高阻抗电流输出与50 Ω电阻差分端接,从而将变压器的源阻抗定义为50 Ω。

图2:差分变压器耦合

所得到的差分电压驱动1:1 RF变压器的初级绕组,从而在次级绕组的输出端产生单端电 压。50 Ω LC滤波器的输出与50 Ω负载电阻RL相匹配,进而最终产生1 Vp-p的输出电压。

变压器不仅用于将差分输出转换成单端信号,而且还将DAC的输出与LC滤波器的抗性负 载隔离开来,因而可以改善整体失真性能。

需要低至DC的频率响应时,可以连接运算放大器作为差分转单端转换器来获取单端输 出。 在图3中,运算放大器AD8055用于实现高带宽和低失真。电流输出DAC驱动平衡的 25 Ω阻性负载,从而在各输出端产生0至+0.5 V的错相电压。这项技术用于代替直接I/V转 换,从而防止高压摆率DAC电流导致放大器过载和引入失真。必须小心地处理使DAC输 出电压位于其顺从电压额定值范围之内。

图3:采用双电源运算放大器时的差分直流耦合输出

AD8055的增益配置为2,以最终产生2 V p-p且以地电压为基准的单端输出电压。注意,由 于输出信号摆幅高于/低于地,因此需要采用双电源运算放大器。

CFILTER电容构成具有50 Ω等效差分输出阻抗的差分滤波器。此滤波器可减少运算放大器的 任何压摆率型失真,而该滤波器的最佳截止频率是凭经验来确定的,旨在获得最佳整体失 真性能。

只要运算放大器的共模电压设为中间电源电压(+2.5 V),则图3中的电路经过改良后可以采 用单电源供电。具体如图4所示,其中使用的是运算放大器AD8061。输出电压为2 Vp-p且 以共模电压+2.5 V为中心。此共模电压可以使用电阻分压器从+5 V电源产生,或直接从 +2.5 V基准电压源产生。如果使用+5 V电源来提供共模电压,则必须进行深度去耦,以免 放大电源噪声。

图4:采用单电源运算放大器时的差分直流耦合输出

单端电流电压转换

通过使用单个运算放大器作为I/V转换器,便可轻松执行单端电流电压转换,如图5所 示。AD768的10 mA满量程DAC电流输出可以在200 Ω RF电阻上产生0至+2 V的输出电 压。

图5:适用于16位精密DAC AD768的单端I/V运算放大器接口

通过驱动AD8055运算放大器的虚拟地,可以最大程度地减少因DAC输出阻抗中的非线性 而导致的任何失真。实际上,这种类型的DAC大多数都使用I/V转换器进行过工厂调整。

但是应注意,与差分工作模式相比,以这种方式使用DAC的单端输出时,共模抑制性能将 下降,且2阶失真产物将增加。

CF反馈电容应当进行优化,以在电路中实现最佳脉冲响应。图中给出的等式仅供参考。

基于R-2R的电流输出DAC的输出阻抗与码字有关,因此其输出必须驱动运算放大器的虚 拟地,以便维持线性。16/14位DAC AD5545/AD5555都是此种架构的很好范例。图6所示为 一种合适的接口电路,其中ADR03用作2.5 V基准电压源,而AD8628斩波稳定运算放大器 用作输出I/V转换器。

图6:AD5545/AD5555双通道16/14位R-2R电流输出DAC接口

外部2.5 V基准电压源决定满量程输出电流0.5 mA。注意,5 kΩ反馈电阻包含在DAC内,且 无需外部电阻,即可增加温度稳定性。因此,运算放大器的满量程输出电压为–2.5 V。CF 反馈电容补偿DAC输出阻抗,因此应当选择来优化脉冲响应,起点通常为20 pF。

差分电流转差分电压转换

如果要求从电流输出DAC获得缓冲差分电压输出,则可以使用AD813x系列差分放大器, 如图7所示。

图7:使用差分放大器AD8138来对高速DAC进行缓冲

DAC输出电流首先流过25 Ω电阻而转换成电压。接着,使用AD8138将电压放大5倍。这 项技术用于代替直接I/V转换,从而防止高压摆率DAC电流导致放大器过载和引入失真。 必须小心地处理使DAC输出电压位于其顺从电压额定值范围之内。

AD8138的VOCM输入可用于设置AD8138规格范围内的最终输出共模电压。通过添加一 对75 Ω串联输出电阻,将允许驱动传输线路。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3