IPC(进程间通信方式的介绍)

您所在的位置:网站首页 cpu的ipc如何查看 IPC(进程间通信方式的介绍)

IPC(进程间通信方式的介绍)

2024-02-20 02:53| 来源: 网络整理| 查看: 265

进程间通信(IPC)介绍

进程间通信(IPC,InterProcess Communication)是指在不同进程之间传播或交换信息。

IPC的方式通常有管道(包括无名管道和命名管道)、消息队列、信号量、共享存储、Socket、Streams等。其中 Socket和Streams支持不同主机上的两个进程IPC。

以Linux中的C语言编程为例。

一、管道

管道,通常指无名管道,是 UNIX 系统IPC最古老的形式。

1、特点:

它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端。

它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)。

它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。

一、管道

管道,通常指无名管道,是 UNIX 系统IPC最古老的形式。

1、特点:

它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端。

它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)。

它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。

2、原型: 1 #include 2 int pipe(int fd[2]); // 返回值:若成功返回0,失败返回-1

当一个管道建立时,它会创建两个文件描述符:fd[0]为读而打开,fd[1]为写而打开。如下图:

要关闭管道只需将这两个文件描述符关闭即可。

3、例子

单个进程中的管道几乎没有任何用处。所以,通常调用 pipe 的进程接着调用 fork,这样就创建了父进程与子进程之间的 IPC 通道。如下图所示:

若要数据流从父进程流向子进程,则关闭父进程的读端(fd[0])与子进程的写端(fd[1]);反之,则可以使数据流从子进程流向父进程。

复制代码

1 #include 2 #include 3 4 int main() 5 { 6 int fd[2]; // 两个文件描述符 7 pid_t pid; 8 char buff[20]; 9 10 if(pipe(fd) < 0) // 创建管道 11 printf("Create Pipe Error!\n"); 12 13 if((pid = fork()) < 0) // 创建子进程 14 printf("Fork Error!\n"); 15 else if(pid > 0) // 父进程 16 { 17 close(fd[0]); // 关闭读端 18 write(fd[1], "hello world\n", 12); 19 } 20 else 21 { 22 close(fd[1]); // 关闭写端 23 read(fd[0], buff, 20); 24 printf("%s", buff); 25 } 26 27 return 0; 28 }

复制代码

二、FIFO

FIFO,也称为命名管道,它是一种文件类型。

1、特点

FIFO可以在无关的进程之间交换数据,与无名管道不同。

FIFO有路径名与之相关联,它以一种特殊设备文件形式存在于文件系统中。

2、原型 1 #include 2 // 返回值:成功返回0,出错返回-1 3 int mkfifo(const char *pathname, mode_t mode);

其中的 mode 参数与open函数中的 mode 相同。一旦创建了一个 FIFO,就可以用一般的文件I/O函数操作它。

当 open 一个FIFO时,是否设置非阻塞标志(O_NONBLOCK)的区别:

若没有指定O_NONBLOCK(默认),只读 open 要阻塞到某个其他进程为写而打开此 FIFO。类似的,只写 open 要阻塞到某个其他进程为读而打开它。

若指定了O_NONBLOCK,则只读 open 立即返回。而只写 open 将出错返回 -1 如果没有进程已经为读而打开该 FIFO,其errno置ENXIO。

3、例子

FIFO的通信方式类似于在进程中使用文件来传输数据,只不过FIFO类型文件同时具有管道的特性。在数据读出时,FIFO管道中同时清除数据,并且“先进先出”。下面的例子演示了使用 FIFO 进行 IPC 的过程:

write_fifo.c

复制代码

1 #include 2 #include // exit 3 #include // O_WRONLY 4 #include 5 #include // time 6 7 int main() 8 { 9 int fd; 10 int n, i; 11 char buf[1024]; 12 time_t tp; 13 14 printf("I am %d process.\n", getpid()); // 说明进程ID 15 16 if((fd = open("fifo1", O_WRONLY)) < 0) // 以写打开一个FIFO 17 { 18 perror("Open FIFO Failed"); 19 exit(1); 20 } 21 22 for(i=0; i 0) // 读取FIFO管道 23 printf("Read message: %s", buf); 24 25 close(fd); // 关闭FIFO文件 26 return 0; 27 }

复制代码

在两个终端里用 gcc 分别编译运行上面两个文件,可以看到输出结果如下:

复制代码

1 [cheesezh@localhost]$ ./write_fifo 2 I am 5954 process. 3 Send message: Process 5954's time is Mon Apr 20 12:37:28 2015 4 Send message: Process 5954's time is Mon Apr 20 12:37:29 2015 5 Send message: Process 5954's time is Mon Apr 20 12:37:30 2015 6 Send message: Process 5954's time is Mon Apr 20 12:37:31 2015 7 Send message: Process 5954's time is Mon Apr 20 12:37:32 2015 8 Send message: Process 5954's time is Mon Apr 20 12:37:33 2015 9 Send message: Process 5954's time is Mon Apr 20 12:37:34 2015 10 Send message: Process 5954's time is Mon Apr 20 12:37:35 2015 11 Send message: Process 5954's time is Mon Apr 20 12:37:36 2015 12 Send message: Process 5954's time is Mon Apr 20 12:37:37 2015

复制代码

 

复制代码

1 [cheesezh@localhost]$ ./read_fifo 2 Read message: Process 5954's time is Mon Apr 20 12:37:28 2015 3 Read message: Process 5954's time is Mon Apr 20 12:37:29 2015 4 Read message: Process 5954's time is Mon Apr 20 12:37:30 2015 5 Read message: Process 5954's time is Mon Apr 20 12:37:31 2015 6 Read message: Process 5954's time is Mon Apr 20 12:37:32 2015 7 Read message: Process 5954's time is Mon Apr 20 12:37:33 2015 8 Read message: Process 5954's time is Mon Apr 20 12:37:34 2015 9 Read message: Process 5954's time is Mon Apr 20 12:37:35 2015 10 Read message: Process 5954's time is Mon Apr 20 12:37:36 2015 11 Read message: Process 5954's time is Mon Apr 20 12:37:37 2015

复制代码

上述例子可以扩展成 客户进程—服务器进程 通信的实例,write_fifo的作用类似于客户端,可以打开多个客户端向一个服务器发送请求信息,read_fifo类似于服务器,它适时监控着FIFO的读端,当有数据时,读出并进行处理,但是有一个关键的问题是,每一个客户端必须预先知道服务器提供的FIFO接口,下图显示了这种安排:

三、消息队列

消息队列,是消息的链接表,存放在内核中。一个消息队列由一个标识符(即队列ID)来标识。

1、特点

消息队列是面向记录的,其中的消息具有特定的格式以及特定的优先级。

消息队列独立于发送与接收进程。进程终止时,消息队列及其内容并不会被删除。

消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取。

2、原型

复制代码

1 #include 2 // 创建或打开消息队列:成功返回队列ID,失败返回-1 3 int msgget(key_t key, int flag); 4 // 添加消息:成功返回0,失败返回-1 5 int msgsnd(int msqid, const void *ptr, size_t size, int flag); 6 // 读取消息:成功返回消息数据的长度,失败返回-1 7 int msgrcv(int msqid, void *ptr, size_t size, long type,int flag); 8 // 控制消息队列:成功返回0,失败返回-1 9 int msgctl(int msqid, int cmd, struct msqid_ds *buf);

复制代码

在以下两种情况下,msgget将创建一个新的消息队列:

如果没有与键值key相对应的消息队列,并且flag中包含了IPC_CREAT标志位。key参数为IPC_PRIVATE。

函数msgrcv在读取消息队列时,type参数有下面几种情况:

type == 0,返回队列中的第一个消息;type > 0,返回队列中消息类型为 type 的第一个消息;type < 0,返回队列中消息类型值小于或等于 type 绝对值的消息,如果有多个,则取类型值最小的消息。

可以看出,type值非 0 时用于以非先进先出次序读消息。也可以把 type 看做优先级的权值。(其他的参数解释,请自行Google之)

3、例子

下面写了一个简单的使用消息队列进行IPC的例子,服务端程序一直在等待特定类型的消息,当收到该类型的消息以后,发送另一种特定类型的消息作为反馈,客户端读取该反馈并打印出来。

msg_server.c

复制代码

1 #include 2 #include 3 #include 4 5 // 用于创建一个唯一的key 6 #define MSG_FILE "/etc/passwd" 7 8 // 消息结构 9 struct msg_form { 10 long mtype; 11 char mtext[256]; 12 }; 13 14 int main() 15 { 16 int msqid; 17 key_t key; 18 struct msg_form msg; 19 20 // 获取key值 21 if((key = ftok(MSG_FILE,'z')) < 0) 22 { 23 perror("ftok error"); 24 exit(1); 25 } 26 27 // 打印key值 28 printf("Message Queue - Server key is: %d.\n", key); 29 30 // 创建消息队列 31 if ((msqid = msgget(key, IPC_CREAT|0777)) == -1) 32 { 33 perror("msgget error"); 34 exit(1); 35 } 36 37 // 打印消息队列ID及进程ID 38 printf("My msqid is: %d.\n", msqid); 39 printf("My pid is: %d.\n", getpid()); 40 41 // 循环读取消息 42 for(;;) 43 { 44 msgrcv(msqid, &msg, 256, 888, 0);// 返回类型为888的第一个消息 45 printf("Server: receive msg.mtext is: %s.\n", msg.mtext); 46 printf("Server: receive msg.mtype is: %d.\n", msg.mtype); 47 48 msg.mtype = 999; // 客户端接收的消息类型 49 sprintf(msg.mtext, "hello, I'm server %d", getpid()); 50 msgsnd(msqid, &msg, sizeof(msg.mtext), 0); 51 } 52 return 0; 53 }

复制代码

msg_client.c

复制代码

1 #include 2 #include 3 #include 4 5 // 用于创建一个唯一的key 6 #define MSG_FILE "/etc/passwd" 7 8 // 消息结构 9 struct msg_form { 10 long mtype; 11 char mtext[256]; 12 }; 13 14 int main() 15 { 16 int msqid; 17 key_t key; 18 struct msg_form msg; 19 20 // 获取key值 21 if ((key = ftok(MSG_FILE, 'z')) < 0) 22 { 23 perror("ftok error"); 24 exit(1); 25 } 26 27 // 打印key值 28 printf("Message Queue - Client key is: %d.\n", key); 29 30 // 打开消息队列 31 if ((msqid = msgget(key, IPC_CREAT|0777)) == -1) 32 { 33 perror("msgget error"); 34 exit(1); 35 } 36 37 // 打印消息队列ID及进程ID 38 printf("My msqid is: %d.\n", msqid); 39 printf("My pid is: %d.\n", getpid()); 40 41 // 添加消息,类型为888 42 msg.mtype = 888; 43 sprintf(msg.mtext, "hello, I'm client %d", getpid()); 44 msgsnd(msqid, &msg, sizeof(msg.mtext), 0); 45 46 // 读取类型为777的消息 47 msgrcv(msqid, &msg, 256, 999, 0); 48 printf("Client: receive msg.mtext is: %s.\n", msg.mtext); 49 printf("Client: receive msg.mtype is: %d.\n", msg.mtype); 50 return 0; 51 }

复制代码

四、信号量

信号量(semaphore)与已经介绍过的 IPC 结构不同,它是一个计数器。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。

1、特点

信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。

信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。

每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。

支持信号量组。

2、原型

最简单的信号量是只能取 0 和 1 的变量,这也是信号量最常见的一种形式,叫做二值信号量(Binary Semaphore)。而可以取多个正整数的信号量被称为通用信号量。

Linux 下的信号量函数都是在通用的信号量数组上进行操作,而不是在一个单一的二值信号量上进行操作。

复制代码

1 #include 2 // 创建或获取一个信号量组:若成功返回信号量集ID,失败返回-1 3 int semget(key_t key, int num_sems, int sem_flags); 4 // 对信号量组进行操作,改变信号量的值:成功返回0,失败返回-1 5 int semop(int semid, struct sembuf semoparray[], size_t numops); 6 // 控制信号量的相关信息 7 int semctl(int semid, int sem_num, int cmd, ...);

复制代码

当semget创建新的信号量集合时,必须指定集合中信号量的个数(即num_sems),通常为1; 如果是引用一个现有的集合,则将num_sems指定为 0 。

在semop函数中,sembuf结构的定义如下:

复制代码

1 struct sembuf 2 { 3 short sem_num; // 信号量组中对应的序号,0~sem_nums-1 4 short sem_op; // 信号量值在一次操作中的改变量 5 short sem_flg; // IPC_NOWAIT, SEM_UNDO 6 }

复制代码

其中 sem_op 是一次操作中的信号量的改变量:

若sem_op > 0,表示进程释放相应的资源数,将 sem_op 的值加到信号量的值上。如果有进程正在休眠等待此信号量,则换行它们。

若sem_op < 0,请求 sem_op 的绝对值的资源。

如果相应的资源数可以满足请求,则将该信号量的值减去sem_op的绝对值,函数成功返回。当相应的资源数不能满足请求时,这个操作与sem_flg有关。 sem_flg 指定IPC_NOWAIT,则semop函数出错返回EAGAIN。sem_flg 没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生: 当相应的资源数可以满足请求,此信号量的semncnt值减1,该信号量的值减去sem_op的绝对值。成功返回;此信号量被删除,函数smeop出错返回EIDRM;进程捕捉到信号,并从信号处理函数返回,此情况下将此信号量的semncnt值减1,函数semop出错返回EINTR

若sem_op == 0,进程阻塞直到信号量的相应值为0:

当信号量已经为0,函数立即返回。如果信号量的值不为0,则依据sem_flg决定函数动作: sem_flg指定IPC_NOWAIT,则出错返回EAGAIN。sem_flg没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生: 信号量值为0,将信号量的semzcnt的值减1,函数semop成功返回;此信号量被删除,函数smeop出错返回EIDRM;进程捕捉到信号,并从信号处理函数返回,在此情况将此信号量的semncnt值减1,函数semop出错返回EINTR

在semctl函数中的命令有多种,这里就说两个常用的:

SETVAL:用于初始化信号量为一个已知的值。所需要的值作为联合semun的val成员来传递。在信号量第一次使用之前需要设置信号量。IPC_RMID:删除一个信号量集合。如果不删除信号量,它将继续在系统中存在,即使程序已经退出,它可能在你下次运行此程序时引发问题,而且信号量是一种有限的资源。 3、例子

复制代码

1 #include 2 #include 3 #include 4 5 // 联合体,用于semctl初始化 6 union semun 7 { 8 int val; /*for SETVAL*/ 9 struct semid_ds *buf; 10 unsigned short *array; 11 }; 12 13 // 初始化信号量 14 int init_sem(int sem_id, int value) 15 { 16 union semun tmp; 17 tmp.val = value; 18 if(semctl(sem_id, 0, SETVAL, tmp) == -1) 19 { 20 perror("Init Semaphore Error"); 21 return -1; 22 } 23 return 0; 24 } 25 26 // P操作: 27 // 若信号量值为1,获取资源并将信号量值-1 28 // 若信号量值为0,进程挂起等待 29 int sem_p(int sem_id) 30 { 31 struct sembuf sbuf; 32 sbuf.sem_num = 0; /*序号*/ 33 sbuf.sem_op = -1; /*P操作*/ 34 sbuf.sem_flg = SEM_UNDO; 35 36 if(semop(sem_id, &sbuf, 1) == -1) 37 { 38 perror("P operation Error"); 39 return -1; 40 } 41 return 0; 42 } 43 44 // V操作: 45 // 释放资源并将信号量值+1 46 // 如果有进程正在挂起等待,则唤醒它们 47 int sem_v(int sem_id) 48 { 49 struct sembuf sbuf; 50 sbuf.sem_num = 0; /*序号*/ 51 sbuf.sem_op = 1; /*V操作*/ 52 sbuf.sem_flg = SEM_UNDO; 53 54 if(semop(sem_id, &sbuf, 1) == -1) 55 { 56 perror("V operation Error"); 57 return -1; 58 } 59 return 0; 60 } 61 62 // 删除信号量集 63 int del_sem(int sem_id) 64 { 65 union semun tmp; 66 if(semctl(sem_id, 0, IPC_RMID, tmp) == -1) 67 { 68 perror("Delete Semaphore Error"); 69 return -1; 70 } 71 return 0; 72 } 73 74 75 int main() 76 { 77 int sem_id; // 信号量集ID 78 key_t key; 79 pid_t pid; 80 81 // 获取key值 82 if((key = ftok(".", 'z')) < 0) 83 { 84 perror("ftok error"); 85 exit(1); 86 } 87 88 // 创建信号量集,其中只有一个信号量 89 if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1) 90 { 91 perror("semget error"); 92 exit(1); 93 } 94 95 // 初始化:初值设为0资源被占用 96 init_sem(sem_id, 0); 97 98 if((pid = fork()) == -1) 99 perror("Fork Error"); 100 else if(pid == 0) /*子进程*/ 101 { 102 sleep(2); 103 printf("Process child: pid=%d\n", getpid()); 104 sem_v(sem_id); /*释放资源*/ 105 } 106 else /*父进程*/ 107 { 108 sem_p(sem_id); /*等待资源*/ 109 printf("Process father: pid=%d\n", getpid()); 110 sem_v(sem_id); /*释放资源*/ 111 del_sem(sem_id); /*删除信号量集*/ 112 } 113 return 0; 114 }

复制代码

上面的例子如果不加信号量,则父进程会先执行完毕。这里加了信号量让父进程等待子进程执行完以后再执行。

五、共享内存

共享内存(Shared Memory),指两个或多个进程共享一个给定的存储区。

1、特点

共享内存是最快的一种 IPC,因为进程是直接对内存进行存取。

因为多个进程可以同时操作,所以需要进行同步。

信号量+共享内存通常结合在一起使用,信号量用来同步对共享内存的访问。

2、原型

复制代码

1 #include 2 // 创建或获取一个共享内存:成功返回共享内存ID,失败返回-1 3 int shmget(key_t key, size_t size, int flag); 4 // 连接共享内存到当前进程的地址空间:成功返回指向共享内存的指针,失败返回-1 5 void *shmat(int shm_id, const void *addr, int flag); 6 // 断开与共享内存的连接:成功返回0,失败返回-1 7 int shmdt(void *addr); 8 // 控制共享内存的相关信息:成功返回0,失败返回-1 9 int shmctl(int shm_id, int cmd, struct shmid_ds *buf);

复制代码

当用shmget函数创建一段共享内存时,必须指定其 size;而如果引用一个已存在的共享内存,则将 size 指定为0 。

当一段共享内存被创建以后,它并不能被任何进程访问。必须使用shmat函数连接该共享内存到当前进程的地址空间,连接成功后把共享内存区对象映射到调用进程的地址空间,随后可像本地空间一样访问。

shmdt函数是用来断开shmat建立的连接的。注意,这并不是从系统中删除该共享内存,只是当前进程不能再访问该共享内存而已。

shmctl函数可以对共享内存执行多种操作,根据参数 cmd 执行相应的操作。常用的是IPC_RMID(从系统中删除该共享内存)。

3、例子

下面这个例子,使用了【共享内存+信号量+消息队列】的组合来实现服务器进程与客户进程间的通信。

共享内存用来传递数据;信号量用来同步;消息队列用来 在客户端修改了共享内存后 通知服务器读取。

server.c

复制代码

1 #include 2 #include 3 #include // shared memory 4 #include // semaphore 5 #include // message queue 6 #include // memcpy 7 8 // 消息队列结构 9 struct msg_form { 10 long mtype; 11 char mtext; 12 }; 13 14 // 联合体,用于semctl初始化 15 union semun 16 { 17 int val; /*for SETVAL*/ 18 struct semid_ds *buf; 19 unsigned short *array; 20 }; 21 22 // 初始化信号量 23 int init_sem(int sem_id, int value) 24 { 25 union semun tmp; 26 tmp.val = value; 27 if(semctl(sem_id, 0, SETVAL, tmp) == -1) 28 { 29 perror("Init Semaphore Error"); 30 return -1; 31 } 32 return 0; 33 } 34 35 // P操作: 36 // 若信号量值为1,获取资源并将信号量值-1 37 // 若信号量值为0,进程挂起等待 38 int sem_p(int sem_id) 39 { 40 struct sembuf sbuf; 41 sbuf.sem_num = 0; /*序号*/ 42 sbuf.sem_op = -1; /*P操作*/ 43 sbuf.sem_flg = SEM_UNDO; 44 45 if(semop(sem_id, &sbuf, 1) == -1) 46 { 47 perror("P operation Error"); 48 return -1; 49 } 50 return 0; 51 } 52 53 // V操作: 54 // 释放资源并将信号量值+1 55 // 如果有进程正在挂起等待,则唤醒它们 56 int sem_v(int sem_id) 57 { 58 struct sembuf sbuf; 59 sbuf.sem_num = 0; /*序号*/ 60 sbuf.sem_op = 1; /*V操作*/ 61 sbuf.sem_flg = SEM_UNDO; 62 63 if(semop(sem_id, &sbuf, 1) == -1) 64 { 65 perror("V operation Error"); 66 return -1; 67 } 68 return 0; 69 } 70 71 // 删除信号量集 72 int del_sem(int sem_id) 73 { 74 union semun tmp; 75 if(semctl(sem_id, 0, IPC_RMID, tmp) == -1) 76 { 77 perror("Delete Semaphore Error"); 78 return -1; 79 } 80 return 0; 81 } 82 83 // 创建一个信号量集 84 int creat_sem(key_t key) 85 { 86 int sem_id; 87 if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1) 88 { 89 perror("semget error"); 90 exit(-1); 91 } 92 init_sem(sem_id, 1); /*初值设为1资源未占用*/ 93 return sem_id; 94 } 95 96 97 int main() 98 { 99 key_t key; 100 int shmid, semid, msqid; 101 char *shm; 102 char data[] = "this is server"; 103 struct shmid_ds buf1; /*用于删除共享内存*/ 104 struct msqid_ds buf2; /*用于删除消息队列*/ 105 struct msg_form msg; /*消息队列用于通知对方更新了共享内存*/ 106 107 // 获取key值 108 if((key = ftok(".", 'z')) < 0) 109 { 110 perror("ftok error"); 111 exit(1); 112 } 113 114 // 创建共享内存 115 if((shmid = shmget(key, 1024, IPC_CREAT|0666)) == -1) 116 { 117 perror("Create Shared Memory Error"); 118 exit(1); 119 } 120 121 // 连接共享内存 122 shm = (char*)shmat(shmid, 0, 0); 123 if((int)shm == -1) 124 { 125 perror("Attach Shared Memory Error"); 126 exit(1); 127 } 128 129 130 // 创建消息队列 131 if ((msqid = msgget(key, IPC_CREAT|0777)) == -1) 132 { 133 perror("msgget error"); 134 exit(1); 135 } 136 137 // 创建信号量 138 semid = creat_sem(key); 139 140 // 读数据 141 while(1) 142 { 143 msgrcv(msqid, &msg, 1, 888, 0); /*读取类型为888的消息*/ 144 if(msg.mtext == 'q') /*quit - 跳出循环*/ 145 break; 146 if(msg.mtext == 'r') /*read - 读共享内存*/ 147 { 148 sem_p(semid); 149 printf("%s\n",shm); 150 sem_v(semid); 151 } 152 } 153 154 // 断开连接 155 shmdt(shm); 156 157 /*删除共享内存、消息队列、信号量*/ 158 shmctl(shmid, IPC_RMID, &buf1); 159 msgctl(msqid, IPC_RMID, &buf2); 160 del_sem(semid); 161 return 0; 162 }

复制代码

client.c

复制代码

1 #include 2 #include 3 #include // shared memory 4 #include // semaphore 5 #include // message queue 6 #include // memcpy 7 8 // 消息队列结构 9 struct msg_form { 10 long mtype; 11 char mtext; 12 }; 13 14 // 联合体,用于semctl初始化 15 union semun 16 { 17 int val; /*for SETVAL*/ 18 struct semid_ds *buf; 19 unsigned short *array; 20 }; 21 22 // P操作: 23 // 若信号量值为1,获取资源并将信号量值-1 24 // 若信号量值为0,进程挂起等待 25 int sem_p(int sem_id) 26 { 27 struct sembuf sbuf; 28 sbuf.sem_num = 0; /*序号*/ 29 sbuf.sem_op = -1; /*P操作*/ 30 sbuf.sem_flg = SEM_UNDO; 31 32 if(semop(sem_id, &sbuf, 1) == -1) 33 { 34 perror("P operation Error"); 35 return -1; 36 } 37 return 0; 38 } 39 40 // V操作: 41 // 释放资源并将信号量值+1 42 // 如果有进程正在挂起等待,则唤醒它们 43 int sem_v(int sem_id) 44 { 45 struct sembuf sbuf; 46 sbuf.sem_num = 0; /*序号*/ 47 sbuf.sem_op = 1; /*V操作*/ 48 sbuf.sem_flg = SEM_UNDO; 49 50 if(semop(sem_id, &sbuf, 1) == -1) 51 { 52 perror("V operation Error"); 53 return -1; 54 } 55 return 0; 56 } 57 58 59 int main() 60 { 61 key_t key; 62 int shmid, semid, msqid; 63 char *shm; 64 struct msg_form msg; 65 int flag = 1; /*while循环条件*/ 66 67 // 获取key值 68 if((key = ftok(".", 'z')) < 0) 69 { 70 perror("ftok error"); 71 exit(1); 72 } 73 74 // 获取共享内存 75 if((shmid = shmget(key, 1024, 0)) == -1) 76 { 77 perror("shmget error"); 78 exit(1); 79 } 80 81 // 连接共享内存 82 shm = (char*)shmat(shmid, 0, 0); 83 if((int)shm == -1) 84 { 85 perror("Attach Shared Memory Error"); 86 exit(1); 87 } 88 89 // 创建消息队列 90 if ((msqid = msgget(key, 0)) == -1) 91 { 92 perror("msgget error"); 93 exit(1); 94 } 95 96 // 获取信号量 97 if((semid = semget(key, 0, 0)) == -1) 98 { 99 perror("semget error"); 100 exit(1); 101 } 102 103 // 写数据 104 printf("***************************************\n"); 105 printf("* IPC *\n"); 106 printf("* Input r to send data to server. *\n"); 107 printf("* Input q to quit. *\n"); 108 printf("***************************************\n"); 109 110 while(flag) 111 { 112 char c; 113 printf("Please input command: "); 114 scanf("%c", &c); 115 switch(c) 116 { 117 case 'r': 118 printf("Data to send: "); 119 sem_p(semid); /*访问资源*/ 120 scanf("%s", shm); 121 sem_v(semid); /*释放资源*/ 122 /*清空标准输入缓冲区*/ 123 while((c=getchar())!='\n' && c!=EOF); 124 msg.mtype = 888; 125 msg.mtext = 'r'; /*发送消息通知服务器读数据*/ 126 msgsnd(msqid, &msg, sizeof(msg.mtext), 0); 127 break; 128 case 'q': 129 msg.mtype = 888; 130 msg.mtext = 'q'; 131 msgsnd(msqid, &msg, sizeof(msg.mtext), 0); 132 flag = 0; 133 break; 134 default: 135 printf("Wrong input!\n"); 136 /*清空标准输入缓冲区*/ 137 while((c=getchar())!='\n' && c!=EOF); 138 } 139 } 140 141 // 断开连接 142 shmdt(shm); 143 144 return 0; 145 }

复制代码

注意:当scanf()输入字符或字符串时,缓冲区中遗留下了\n,所以每次输入操作后都需要清空标准输入的缓冲区。但是由于 gcc 编译器不支持fflush(stdin)(它只是标准C的扩展),所以我们使用了替代方案:

1 while((c=getchar())!='\n' && c!=EOF);

 

 

五种通讯方式总结

 

 

1.管道:速度慢,容量有限,只有父子进程能通讯    

2.FIFO:任何进程间都能通讯,但速度慢    

3.消息队列:容量受到系统限制,且要注意第一次读的时候,要考虑上一次没有读完数据的问题    

4.信号量:不能传递复杂消息,只能用来同步    

5.共享内存区:能够很容易控制容量,速度快,但要保持同步,比如一个进程在写的时候,另一个进程要注意读写的问题,相当于线程中的线程安全,当然,共享内存区同样可以用作线程间通讯,不过没这个必要,线程间本来就已经共享了同一进程内的一块内存

补充:

 

套接字通信

套接字( socket ) : 套接口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同机器间的进程通信。

之前写过一个课程设计:基于Internet的Linux客户机/服务器系统通讯设计与实现

是利用sock通信实现的,可以参考一下。

通信过程如下:

8.1命名socket

SOCK_STREAM 式本地套接字的通信双方均需要具有本地地址,其中服务器端的本地地址需要明确指定,指定方法是使用 struct sockaddr_un 类型的变量。

8.2 绑定

SOCK_STREAM 式本地套接字的通信双方均需要具有本地地址,其中服务器端的本地地址需要明确指定,指定方法是使用 struct sockaddr_un 类型的变量,将相应字段赋值,再将其绑定在创建的服务器套接字上,绑定要使用 bind 系统调用,其原形如下:

int bind(int socket, const struct sockaddr *address, size_t address_len);  其中 socket表示服务器端的套接字描述符,address 表示需要绑定的本地地址,是一个 struct sockaddr_un 类型的变量,address_len 表示该本地地址的字节长度。

8.3 监听

服务器端套接字创建完毕并赋予本地地址值(名称,本例中为Server Socket)后,需要进行监听,等待客户端连接并处理请求,监听使用 listen 系统调用,接受客户端连接使用accept系统调用,它们的原形如下:

int listen(int socket, int backlog); int accept(int socket, struct sockaddr *address, size_t *address_len); 123

其中 socket 表示服务器端的套接字描述符;backlog 表示排队连接队列的长度(若有多个客户端同时连接,则需要进行排队);address 表示当前连接客户端的本地地址,该参数为输出参数,是客户端传递过来的关于自身的信息;address_len 表示当前连接客户端本地地址的字节长度,这个参数既是输入参数,又是输出参数。

8.4 连接服务器

客户端套接字创建完毕并赋予本地地址值后,需要连接到服务器端进行通信,让服务器端为其提供处理服务。

对于SOCK_STREAM类型的流式套接字,需要客户端与服务器之间进行连接方可使用。连接要使用 connect 系统调用,其原形为

int connect(int socket, const struct sockaddr *address, size_t address_len); 1

其中socket为客户端的套接字描述符,address表示当前客户端的本地地址,是一个 struct sockaddr_un 类型的变量,address_len 表示本地地址的字节长度。实现连接的代码如下:

connect(client_sockfd, (struct sockaddr*)&client_address, sizeof(client_address)); 1

8.5 相互发送接收数据

无论客户端还是服务器,都要和对方进行数据上的交互,这种交互也正是我们进程通信的主题。一个进程扮演客户端的角色,另外一个进程扮演服务器的角色,两个进程之间相互发送接收数据,这就是基于本地套接字的进程通信。发送和接收数据要使用 write 和 read 系统调用,它们的原形为:

int read(int socket, char *buffer, size_t len); int write(int socket, char *buffer, size_t len); 12

其中 socket 为套接字描述符;len 为需要发送或需要接收的数据长度;

对于 read 系统调用,buffer 是用来存放接收数据的缓冲区,即接收来的数据存入其中,是一个输出参数;

对于 write 系统调用,buffer 用来存放需要发送出去的数据,即 buffer 内的数据被发送出去,是一个输入参数;返回值为已经发送或接收的数据长度。

8.6 断开连接

交互完成后,需要将连接断开以节省资源,使用close系统调用,其原形为:

 

转载自 http://www.cnblogs.com/CheeseZH/p/5264465.html



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3