A/D转换器的基本原理及种类

您所在的位置:网站首页 ad转换速度最慢的是 A/D转换器的基本原理及种类

A/D转换器的基本原理及种类

2024-07-11 23:39| 来源: 网络整理| 查看: 265

一、A/D转换的基本原理

在一系列选定的瞬间对模拟信号进行取样,然后再将这些取样值转换成输出的数字量,并按一定的编码形式给出转换结果。整个A/D转换过程大致可分为取样、量化、编码三个过程。

二、取样-保持电路

wKgaomR-5COAM4xqAAAq3-DNYvM347.png

取样-保持电路的基本形式如上图,图中T为N沟道增强型MOS管,作模拟开关使用。

当取样控制信号Vi为高电平时T导通,输入信号Vi经电阻R1和T向电容CH充电。若取R1=RF,且视运算放大器为理想运算放大器,则充电结束后,Vo=Vch=-Vi

当Vi返回低电平以后,MOS管T截止,由于CH上的电压在一段时间内基本保持不变,所以Vo也保持不变,取样结果被保存下来(CH的漏电流越小,运算放大器的输入阻抗越高,Vo保持的时间也越长)。

该电路在取样过程中需要输入电压经R1和T向电容CH充电,这就限制了取样速度,而通过减少R1的办法提高取样速度又必将降低电路的输入阻抗。

三、并联比较型A/D转换器

并联比较型A/D转换器电路结构图如下,它由电压比较器、寄存器和代码转换电路三部分组成。输入为0-Vref间的模拟电压,输出为3位二进制数码d2d1d0。

wKgaomR-5COAQ4joAAB5KtJXd3c266.png

电压比较器中量化电平的方式:采用电阻链将参考电压Vref分压,得到(1/15)Vref到(3/15)Vref之间7个比较电平,量化单位为(2/15)Vref,将这7个比较电平分别接到7个电压比较器C1-C7的输入端作为比较基准,同时将输入的模拟电压同时加到每个比较器的另一个输入端,与这7个比较基准进行比较。

若ViVi,说明数字过大,则该1应去掉,如果Vo

步骤四:按同样的方法将次高位置1,并比较Vo与Vi的大小以确定这一位的1是否应该保留,这样逐位比较下去,直到最低位比较完成为止。此时寄存器里所存的数码就是所求的数字量。

逐次渐近型比较A/D转换器转换速度比计数型A/D转换器速度高很多,而且在输出位数时,电路规模要比并联比较型的小得多,因此逐次渐进型A/D转换器是目前集成A/D转换器产品中用的最多的一种电路。

五、双积分型A/D转换器

如下图,转换器包括积分器、比较器、计数器、控制逻辑、时钟信号源等部分

wKgaomR-5COAWis2AAKR0naXcTI074.png

步骤一:转换开始前(转换控制信号VL=0),先将计数器清零,并接通开关S0,使积分电容C完全放电;

步骤二:令开关S1合到输入信号电压Vi的一侧,积分器对Vi进行固定时间T1的积分,则

wKgZomR-5COARPRcAAARU0FCQXM165.png

故可得数字量:

wKgZomR-5COAEetQAAAO5UTr8Fg891.png

若取T1为Tc的整数倍,则

wKgaomR-5COACPtzAAAHthQCyvw671.png

双积分型A/D转换器的优点是工作性能比较稳定,抗干扰能力强,但由于先后进行了两次积分,因此其工作速度低,一般都在每次几十次以内。

另,双积分型A/D转换器转换精度受计数器位数、比较器的灵敏度、运算放大器、比较器的零点漂移、积分电容的漏电、时钟频率的瞬时波动等多种因素的影响,因此为提高转换精度仅靠增加计数的位数是远不够的。实用电路中为消除运放、比较器的零点漂移,常增加零点漂移自动补偿电路,为防止时钟信号频率在转换过程中发生波动,可以使用石英晶体振荡器作为脉冲源。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3