伴RUNX1突变髓系肿瘤42例临床特征和疗效分析

您所在的位置:网站首页 IDH2基因突变是高危还中危 伴RUNX1突变髓系肿瘤42例临床特征和疗效分析

伴RUNX1突变髓系肿瘤42例临床特征和疗效分析

2024-07-11 05:27| 来源: 网络整理| 查看: 265

Zhonghua Xue Ye Xue Za Zhi. 2018 Dec; 39(12): 983–988. Chinese. doi: 10.3760/cma.j.issn.0253-2727.2018.12.003PMCID: PMC7348223PMID: 30612398

Language: Chinese | English

伴RUNX1突变髓系肿瘤42例临床特征和疗效分析Clinical features and curative effect analysis of patients with myeloid neoplasms and RUNX1 mutations陈 思帆, 王 谈真, 蒋 淑慧, 沈 宏杰, 徐 杨, 周 惠芬, and 吴 德沛Guest Editor (s): 徐 茂强Author information Article notes Copyright and License information PMC Disclaimer215006 苏州大学附属第一医院、江苏省血液研究所;卫生部血栓与止血重点实验室, First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis under Ministry of Health, Suzhou 215006, ChinaCorresponding author.通信作者:周惠芬(Zhou Huifen),Email:nc.ude.adus@nefiuhuohzReceived 2018 May 9Copyright 2018年版权归中华医学会所有Copyright © 2018 by Chinese Medical AssociationThis work is licensed under a Creative Commons Attribution 3.0 License (CC-BY-NC). The Copyright own by Publisher. Without authorization, shall not reprint, except this publication article, shall not use this publication format design. Unless otherwise stated, all articles published in this journal do not represent the views of the Chinese Medical Association or the editorial board of this journal.Abstract目的

研究伴RUNX1突变髓系肿瘤的临床特征和异基因造血干细胞移植(allo-HSCT)的疗效。

方法

回顾性分析2014年7月至2018年4月在苏州大学附属第一医院行二代测序检出RUNX1基因突变的42例髓系肿瘤患者的临床资料。

结果

全部42例伴RUNX1突变髓系肿瘤患者中,男27例,女15例,中位年龄43.5(16~68)岁,急性髓系白血病(AML)30例,骨髓增生异常综合征(MDS)12例。共突变基因中频率最高的是FLT3(26.2%,11/42),携带FLT3共突变基因的均为AML患者(P=0.014)。而MDS患者中最常见的共突变为ASXL1(25%,3/12)。allo-HSCT组(31例)1年总生存(OS)、无病生存(DFS)率分别为(70.6±9.0)%、(61.0±9.4)%,化疗组(11例)1年OS、DFS率分别为(34.4±16.7)%、(22.4±15.3)%,两组OS、DFS率差异有统计学意义(χ2=4.843,P=0.036;χ2=4.320,P=0.047)。单因素分析提示移植年龄>45岁为影响患者OS及DFS的预后不良因素[HR=4.819(95%CI 1.145~20.283),P=0.032;HR=5.945(95%CI 1.715~20.604),P=0.005],染色体核型复杂异常为影响OS的预后不良因素[HR=5.572(95%CI 1.104~28.113),P=0.038]。

结论

allo-HSCT可以改善伴RUNX1突变髓系肿瘤患者预后,移植年龄>45岁、染色体核型复杂异常是影响allo-HSCT疗效的不良预后因素。

Keywords: RUNX1突变, 髓系肿瘤, 异基因造血干细胞移植, 预后AbstractObjective

To investigate the survival and prognostic factors of allogeneic hematopoietic stem-cell transplantation (allo-HSCT) for patients with myeloid neoplasms and RUNX1 mutations.

Methods

From July 2014 to April 2018, the clinical data of forty-two AML/MDS patients with RUNX1 mutations in the First Affiliated Hospital of Soochow University were retrospectively analyzed. The clinical characteristic features and distribution of the mutations frequently observed with RUNX1 mutations were summarized, the prognosis of allo-HSCT for these patients was also analyzed.

Results

Among 42 AML/MDS patients with RUNX1 mutations, 27 were male, 15 were female. The median age was 43.5 (16–68) years old. There are 31 patients in allo-HSCT group and 11 patients in chemotherapy group. RUNX1 mutations co-occurred with many other gene mutations, the most frequent mutations were FLT3 (26.2%, 11/42). Interestingly, FLT3 mutations only occurred in AML patients compared with MDS patients (P=0.014). ASXL1 (25%, 3/12) mutations were observed as the most frequent co-mutations in MDS patients. One-year overall survival (OS), disease-free survival (DFS) of allo-HSCT and chemotherapy patients were (70.6±9.0)%, (61.0±9.4)% and (34.4±16.7)%, (22.4±15.3)%, respectively. When OS and DFS between allo-HSCT and chemotherapy patients were compared, significant differences (χ2=4.843, 4.320, P45 years was a negative effect for OS [HR=4.819 (95% CI 1.145–20.283), P=0.032] and DFS [HR=5.945 (95% CI 1.715–20.604), P=0.005]. Also, complex chromosome karyotype abnormality was a negative effect for OS [HR=5.572 (95%CI 1.104–28.113), P=0.038].

Conclusion

Transplant age (>45 years) and complex chromosome karyotype abnormality were negative prognostic factors in allo-HSCT for myeloid neoplasms patients with RUNX1 mutations.

Keywords: RUNX1 mutations, Myeloid neoplasms, Allogeneic hematopoietic stem cell transplantation, Prognosis

RUNX1基因突变是髓系肿瘤患者最常见的分子遗传学异常之一。约15%的急性髓系白血病(AML)和10%的骨髓增生异常综合征(MDS)患者存在RUNX1突变[1]–[3],2017年欧洲白血病网(ELN)分型标准中将伴有单独的RUNX1突变的AML患者归为高危组。Gaidzik等[4]研究显示伴RUNX1基因异常AML患者预后不佳。Chou等[5]的研究结果显示RUNX1突变是AML患者异基因造血干细胞移植(allo-HSCT)的预后良好因素。我们回顾性分析我中心收治的42例伴RUNX1突变髓系肿瘤患者的临床特征,比较化疗及allo-HSCT的疗效。

病例与方法

一、病例资料

回顾性分析2014年7月至2018年4月在苏州大学附属第一医院行二代测序检出RUNX1基因突变的42例髓系肿瘤患者(AML 30例,MDS 12例)。提取初诊患者骨髓单个核细胞,抽提基因组DNA,构建包括ASXL1、CEBPA、FLT3、DNMT3A、RUNX1等51个血液病相关的常见热点基因Ion AmpliSeq文库,使用ABI Ion Torrent S5测序仪进行检测。所有患者诊断及分型均符合文献[6]–[7]标准,根据骨髓细胞形态学、免疫表型分析、细胞遗传学、分子生物学(MICM)进行诊断分型。

二、诱导及巩固治疗

30例AML患者接受以IA(去甲氧柔红霉素+阿糖胞苷)、地西他滨联合CAG(阿柔比星+阿糖胞苷+G-CSF)/IAG(去甲氧柔红霉素+阿糖胞苷+G-CSF)半量预激方案为主的诱导缓解治疗。达完全缓解(CR)的患者后续采用中大剂量阿糖胞苷单药或联合蒽环/蒽醌类方案巩固治疗。部分缓解(PR)或未缓解(NR)的患者接受地西他滨联合预激方案再诱导。12例MDS患者则主要采用地西他滨单药诱导治疗,达CR的患者继续以地西他滨单药巩固治疗,PR或NR的患者则接受地西他滨联合CAG/IAG半量预激方案再诱导治疗。

三、造血干细胞移植

1.基本特征:31例患者接受allo-HSCT。移植前19例患者处于CR,1例患者PR,5例患者NR,2例患者复发。HLA全相合移植16例(同胞供者11例,无关供者5例),单倍型移植15例。所有供者均于移植前5 d起接受G-CSF(300 µg每12 h 1次)动员。全相合同胞及无关供者于移植前2 d起采集外周血造血干细胞;单倍型供者在动员后于硬膜外麻醉下采集骨髓,次日采集外周血造血干细胞。

2.预处理及GVHD预防:29例患者采用改良Bu-Cy(白消安+环磷酰胺)±抗胸腺细胞球蛋白(ATG)预处理方案,1例采用FBAA(氟达拉滨+白消安+阿糖胞苷+ATG)预处理方案,1例采用Flu+Cy(氟达拉滨+环磷酰胺)预处理方案。无关供者全相合移植GVHD预防方案:ATG 2.5 mg·kg−1·d−1,−4~−2 d;甲氨蝶呤(MTX)15 mg/m2、+1 d,10 mg/m2、+3、+6、+11 d;环孢素A(CsA)3 mg·kg−1·d−1,−8 d开始;霉酚酸酯(MMF)15 m·kg−1·d−1,−8 d开始。单倍型移植GVHD预防方案:ATG 2.5 mg·kg−1·d−1,−5~−2 d;MTX 15 mg/m2、+1 d,10 mg/m2、+3、+ 6、+11 d;CsA 3 mg·kg−1·d−1,−9 d开始;MMF 1.0 g/d,−9 d开始。同胞全相合移植GVHD预防方案:MTX 15 mg/m2、+1 d,10 mg/m2、+3、+6 d;CsA 3 mg·kg−1·d−1,−1 d开始。

3.造血重建标准:中性粒细胞绝对计数>0.5×109/L连续3 d为粒系造血重建,PLT>20×109/L连续3 d且脱离血小板输注为巨核系造血重建。

四、疗效评价及随访

采用门诊和电话方式进行随访。随访截止日期为2018年4月4日。化疗组总生存(OS)时间定义为确诊日期至患者任何原因死亡或末次随访日,无病生存(DFS)时间定义为获得CR至血液学复发或死亡日期,无上述事件发生者计算至末次随访日。allo-HSCT组OS时间指定义为干细胞回输至死亡或末次随访日,DFS时间定义为干细胞回输至血液学复发或死亡日,无上述事件发生者计算至末次随访日。

五、统计学处理

应用SPSS 22.0软件进行统计分析。计量资料以中位数(范围)表示,采用t检验进行比较。Kaplan-Meier法进行生存分析,并采用Cox风险模型进行OS、DFS的单因素分析,单因素分析中P45岁为影响患者OS及DFS的预后不良因素[HR=4.819(95% CI 1.145~20.283),P=0.032;HR=5.945(95% CI 1.715~20.604),P=0.005]。染色体复杂异常为影响患者OS的预后不良因素[HR=5.572(95% CI 1.104~28.113),P=0.038](表2)。

表231例伴RUNX1突变髓系肿瘤患者allo-HSCT预后影响因素的单因素分析结果因素例数2年总生存率2年无病生存率P值HR(95%CI)P值HR(95%CI)年龄(>45岁,≤45岁)10/210.0324.819(1.145~20.283)0.0055.945(1.715~20.604)性别(男,女)19/120.4011.985(0.400~9.841)0.3601.859(0.493~7.013)WBC(>30×109/L,≤30×109/L)10/210.7500.759(0.139~4.145)0.6070.695(0.174~2.783)染色体核型(复杂异常,其他)3/270.0385.572(1.104~28.113)0.1023.618(0.773~16.933)移植前状态(CR,未达CR)19/80.9570.956(0.185~4.937)0.5061.694(0.359~7.986)移植类型(单倍型,全相合)15/160.1962.587(0.612~10.942)0.3491.771(0.536~5.846)联合脐血造血干细胞(是,否)14/170.3841.949(0.434~8.747)0.5101.519(0.438~5.263)使用ATG(是,否)17/140.3500.505(0.121~2.115)0.5620.693(0.200~2.396)急性GVHD(Ⅲ/Ⅳ度,0~Ⅱ度)9/220.1842.560(0.639~10.252)0.2092.142(0.652~7.035)慢性GVHD(有,无)11/200.4120.511(0.103~2.540)0.3950.562(0.149~2.120)Open in a separate window

注:ATG:抗胸腺细胞球蛋白;CR:完全缓解

讨论

RUNX1最为知名的基因名称为AML1,定位于染色体21q22区,全长超过260 kb,含12个外显子,有RUNX1a、RUNX1b和RUNX1c三种mRNA,三者均含RHD(runt-homology domain)同源结构域,RHD可特异性识别增强子核心区域从而介导RUNX1与DNA结合,调节靶基因的组织特异性表达转录[8]。RUNX1亦可通过RHD与CBFβ结合形成异源二聚体发挥作用,包括转录调节、造血细胞分化、细胞周期调控、核糖体生物合成等[9]。RUNX1的其余功能区分别为靠近C端的反式激活结构域和转录抑制结构域,作用分别为上调靶基因转录及介导RUNX1的抑制功能。

RUNX1与造血干细胞的发育存在密切联系,其在胚胎分化可形成造血干祖细胞(haematopoietic stem and progenitor cells,HSPC)的所有位点均有表达,而敲除了RUNX1的胚胎中无法检测到任何主动脉内的、卵黄动脉或脐动脉的造血细胞群或功能性的HSPC[10]–[11]。不仅如此,原始红细胞的成熟也离不开RUNX1的表达,RUNX1缺失会导致红细胞的形态缺陷,以及红系标志物Ter119和转录因子GATA1、EKLF的表达明显减低[12]。而在成熟的血细胞中,除了成熟红细胞外均表达RUNX1[13],RUNX1也被认为是骨髓中造血干细胞(HSC)和造血祖细胞(HPC)数量平衡的调节因子。RUNX1基因突变也是髓系肿瘤中常见的基因异常,其突变位点常集中于RHD和TD区域[9],主要为显性失活和功能缺失型突变[14],这些突变改变了蛋白质的表达,使其不能有效的与DNA结合或影响了RUNX1的转录激活能力,从而使RUNX1丧失功能。

RUNX1突变常见于高龄、男性AML患者[15]–[16],Gaidzik等[4]报道了一组2 439例AML患者的研究,其中RUNX1突变患者中位年龄为53.9岁,男性为主,且具有血小板计数较高、LDH水平较低等临床特征,常累及3、4、8号外显子。本研究42例患者中男性多见,中位年龄为43.5(16~68)岁,突变位点主要位于5、6、9号外显子(分别为8、8、11例)。既往研究表明,RUNX1突变常常伴高频FLT3突变[17],ASXL1、CEBPA、DNMT3A、NRAS、SF3B1、IDH1、IDH2、WT1等基因常与RUNX1突变共同存在[10]。本研究42例患者中发生FLT3共突变(26.2%,11/42)频率最高,值得注意的是,FLT3共突变仅在伴RUNX1突变AML患者中可见。AML中以FLT3、ASXL1、NRAS及BCORL1等共突变多见,MDS合并较多如ASXL1、DNMT3A、STAG2、U2AF1异常。

Chen等[18]报道MDS伴RUNX1基因突变患者中位OS时间仅11个月,显著低于无该突变患者(28个月),且具有较高的AML转化风险[8]。而伴RUNX1突变AML患者中位OS时间为13.3个月,低于无突变组的21.1个月[4]。本研究中,42例患者中位OS时间为14个月,提示该组预后不良。allo-HSCT能否改善伴RUNX1突变患者的预后尚无大宗病例报道。2014年Chou等[5]对allo-HSCT治疗伴不同基因突变的AML患者的预后因素进行了分析,结果提示RUNX1突变在非HSCT组是一个影响预后的独立危险因素,而在allo-HSCT组却为预后良好因素。本研究中allo-HSCT组1年OS、DFS率显著高于化疗组[(70.6±9.0)%对(34.4±16.7)%,P=0.036;(61.0±9.4)%对(22.4±15.3)%,P=0.047],提示移植可改善RUNX1突变患者的预后。此外,我们对影响allo-HSCT疗效的预后因素进行了分析,结果显示:移植年龄>45岁是影响OS、DFS的危险因素,复杂染色体核型异常是影响OS的危险因素。本研究病例数较少,移植和化疗组属于非随机对照,若扩大样本量、两组均选择CR患者进行随机对照研究可能得出更有意义的结论。

综上所述,本研究结果显示在髓系肿瘤患者中,RUNX1常常与其他基因突变共存,合并该突变的患者整体预后差,allo-HSCT可明显改善此类患者生存,而移植年龄>45岁、复杂染色体核型异常是影响预后的不良因素。

Funding Statement

基金项目:国家重点研发计划(2016YFC0902800、2017YFA0104502、2017ZX09304021);国家自然科学基金(81730003);江苏省自然科学基金(BK20171205);江苏省创新能力建设专项(BM2015004);江苏省科教强卫工程-临床医学中心(YXZXA2016002)、江苏省医学杰出人才项目(JCRCA2016002)

Fund program: The National Key Research and Development Program of China(2016YFC0902800, 2017YFA0104502, 2017ZX09304021); National Natural Science Foundation of China(81730003); Jiangsu Provincial Natural Science Foundation(BK20171205); Jiangsu Provincial Special Program of Innovation Capability(BM2015004); Jiangsu Provincial Key Medical Center(YXZXA2016002); Jiangsu Province Medical Talents Project(JCRCA2016002)

References1. Mendler JH, Maharry K, Radmacher MD, et al. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and MicroRNA expression signatures[J] J Clin Oncol. 2012;30(25):3109–3118. doi: 10.1200/JCO.2011.40.6652. [PMC free article] [PubMed] [CrossRef] [Google Scholar]2. Tang JL, Hou HA, Chen CY, et al. AML1/RUNX1 mutations in 470 adultpatients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations[J] Blood. 2009;114(26):5352–5361. doi: 10.1182/blood-2009-05-223784. [PubMed] [CrossRef] [Google Scholar]3. Haferlach T, Nagata Y, Grossmann V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes[J] Leukemia. 2014;28(2):241–247. doi: 10.1038/leu.2013.336. [PMC free article] [PubMed] [CrossRef] [Google Scholar]4. Gaidzik VI, Teleanu V, Papaemmanuil E, et al. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features[J] Leukemia. 2016;30(11):2160–2168. doi: 10.1038/leu.2016.126. [PubMed] [CrossRef] [Google Scholar]5. Chou SC, Tang JL, Hou HA, et al. Prognostic implication of gene mutations on overall survival in the adult acute myeloid leukemia patients receiving or not receiving allogeneic hematopoietic stem cell transplantations[J] Leuk Res. 2014;38(11):1278–1284. doi: 10.1016/j.leukres.2014.08.012. [PubMed] [CrossRef] [Google Scholar]6. 中华医学会血液学分会白血病淋巴瘤学组 成人急性髓系白血病(非急性早幼粒细胞白血病)中国诊疗指南(2017年版)[J] 中华血液学杂志 2017;38(3):177–182. doi: 10.3760/cma.j.issn.0253-2727.2017.03.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]7. 中华医学会血液学分会 骨髓增生异常综合征诊断与治疗中国专家共识(2014年版)[J] 中华血液学杂志 2014;35(11):1042–1048. doi: 10.3760/cma.j.issn.0253-2727.2014.11.023. [PubMed] [CrossRef] [Google Scholar]8. Perry C, Eldor A, Soreq H. Runx1/AML1 in leukemia: disrupted association with diverse protein partners[J] Leuk Res. 2002;26(3):221–228. doi: 10.1016/S0145-2126(01)00128-X. [PubMed] [CrossRef] [Google Scholar]9. Sood R, Kamikubo Y, Liu P. Role of RUNX1 in hematological malignancies[J] Blood. 2017;129(15):2070–2082. doi: 10.1182/blood-2016-10-687830. [PMC free article] [PubMed] [CrossRef] [Google Scholar]10. North TE, de Bruijn MF, Stacy T, et al. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo[J] Immunity. 2002;16(5):661–672. doi: 10.1016/S1074-7613(02)00296-0. [PubMed] [CrossRef] [Google Scholar]11. North T, Gu TL, Stacy T, et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters[J] Development. 1999;126(11):2563–2575. [PubMed] [Google Scholar]12. Yokomizo T, Hasegawa K, Ishitobi H, et al. Runx1 is involved in primitive erythropoiesis in the mouse[J] Blood. 2008;111(8):4075–4080. doi: 10.1182/blood-2007-05-091637. [PubMed] [CrossRef] [Google Scholar]13. North TE, Stacy T, Matheny CJ, et al. Runx1 is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and lymphoid cells, but not in maturing erythroid cells[J] Stem Cells. 2004;22(2):158–168. doi: 10.1634/stemcells.22-2-158. [PubMed] [CrossRef] [Google Scholar]14. Michaud J, Wu F, Osato M, et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis[J] Blood. 2002;99(4):1364–1372. doi: 10.1182/blood.V99.4.1364. [PubMed] [CrossRef] [Google Scholar]15. Greif PA, Konstandin NP, Metzeler KH, et al. RUNX1 mutations in cytogenetically normal acute myeloid leukemia are associated with a poor prognosis and up-regulation of lymphoid genes[J] Haematologica. 2012;97(12):1909–1915. doi: 10.3324/haematol.2012.064667. [PMC free article] [PubMed] [CrossRef] [Google Scholar]16. Fu L, Fu H, Tian L, et al. High expression of RUNX1 is associated with poorer outcomes in cytogenetically normal acute myeloid leukemia[J] Oncotarget. 2016;7(13):15828–15839. doi: 10.18632/oncotarget.7489. [PMC free article] [PubMed] [CrossRef] [Google Scholar]17. Gaidzik VI, Bullinger L, Schlenk RF, et al. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group[J] J Clin Oncol. 2011;29(10):1364–1372. doi: 10.1200/JCO.2010.30.7926. [PubMed] [CrossRef] [Google Scholar]18. Chen CY, Lin LI, Tang JL, et al. RUNX1 gene mutation in primary myelodysplastic syndrome--the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome[J] Br J Haematol. 2007;139(3):405–414. doi: 10.1111/j.1365-2141.2007.06811.x. [PubMed] [CrossRef] [Google Scholar]


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3